Consortium for Ocean Leadership
1201 New York Ave NW, 4th Floor, Washington DC 20005
www.OceanLeadership.org

in Cooperation with

University of California, San Diego
University of Washington
Woods Hole Oceanographic Institution
Oregon State University
Scripps Institution of Oceanography
Rutgers University
Project Execution Plan

Document Control Sheet

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Description</th>
<th>Originator / ECR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-01</td>
<td>July 31, 2006</td>
<td>Draft</td>
<td></td>
</tr>
<tr>
<td>1-01</td>
<td>Aug 7, 2006</td>
<td>The order of global node implementation was changed in Table A4C-1.</td>
<td></td>
</tr>
<tr>
<td>2-00</td>
<td>Nov 16, 2007</td>
<td></td>
<td>H. Given</td>
</tr>
<tr>
<td>2-01</td>
<td>Sep 29, 2008</td>
<td></td>
<td>H. Given</td>
</tr>
<tr>
<td>2-02</td>
<td>Oct 21, 2008</td>
<td>Incorporates R. Weller, J. Orcutt edits/input. Sections 1.1, 3.4, 3.16.4, 5.3</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>2-03</td>
<td>Oct 30, 2008</td>
<td>Section rewrites, edits, updates</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>2-04</td>
<td>Oct 31, 2008</td>
<td>Edits</td>
<td>L. Brasseur, S. Banahan</td>
</tr>
<tr>
<td>2-05</td>
<td>Jan 14, 2009</td>
<td>Revision to Section 3.11</td>
<td>S. Banahan</td>
</tr>
<tr>
<td>2-06</td>
<td>Jan 18, 2009</td>
<td>Revision to Section 3.7.2</td>
<td>S. Banahan</td>
</tr>
<tr>
<td>2-07</td>
<td>Jan 19, 2009</td>
<td>Edits</td>
<td>T. Cowles</td>
</tr>
<tr>
<td>2-08</td>
<td>Jan 23, 2009</td>
<td>Addition to Section 3.7.2</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>2-09</td>
<td>Jan 30, 2009</td>
<td>Update table and values to section 1.0</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>2-10</td>
<td>Feb 11, 2009</td>
<td>Complete update to reflect NSF directed post FDR variant</td>
<td>S. Williams</td>
</tr>
<tr>
<td>2-11</td>
<td>Feb 20, 2009</td>
<td>Copy edits</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>2-12</td>
<td>Feb 21, 2009</td>
<td>Appendix update</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>2-13</td>
<td>Feb 22, 2009</td>
<td>Copy edits</td>
<td>T. Cowles</td>
</tr>
<tr>
<td>2-14</td>
<td>Feb 22, 2009</td>
<td>Compilation of edits/updates</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>2-15</td>
<td>Feb 23, 2009</td>
<td>Additional edits/updates</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>2-16</td>
<td>Feb 24, 2009</td>
<td>Final edits, financials</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>2-17</td>
<td>Mar 10, 2009</td>
<td>Appendix 4 clarification</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>2-18</td>
<td>Aug 05, 2009</td>
<td>Major update to reflect NSB approved design.</td>
<td>W. Ball</td>
</tr>
<tr>
<td>2-19</td>
<td>Aug 10, 2009</td>
<td>Formatting</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>2-20</td>
<td>Aug 12, 2009</td>
<td>Clerical</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>2-25</td>
<td>Aug 24, 2009</td>
<td>IO Comments Incorporated</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>3-00</td>
<td>Sep 1, 2009</td>
<td>Table updates and release</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>3-01</td>
<td>Nov 4, 2009</td>
<td>NSF requested update</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>3-02</td>
<td>Nov 4, 2009</td>
<td>Risk Register reference. Updated the organization chart.</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added IO organization charts appendix. Interagency and International</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partnerships language was clarified. Added EV diagram.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk database renamed to Risk Register. EA section was</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rewritten with a plan due to NSF prior to EOY.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clarified contingency Management Section. Property Management Plan was</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>referenced, new section of text added to 3.17.</td>
<td></td>
</tr>
<tr>
<td>3-03</td>
<td>Nov 16, 2009</td>
<td>EA update, Sec 3-11.</td>
<td>J. Bintz, S. Williams, A. Ferlaino</td>
</tr>
<tr>
<td>3-04</td>
<td>Nov 17, 2009</td>
<td>EA update, Sec 3-11.</td>
<td>J. Bintz, S. Banahan</td>
</tr>
<tr>
<td>3-05</td>
<td>Nov 19, 2009</td>
<td>EA update, Sec 3-11.</td>
<td>NSF directed change</td>
</tr>
<tr>
<td>3-06</td>
<td>Nov 20, 2009</td>
<td>Section 3-17</td>
<td>A. Ferlaino, ECR# 1300-00026</td>
</tr>
</tbody>
</table>
Project Execution Plan

<table>
<thead>
<tr>
<th>Date</th>
<th>Action Description</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-07 April 12, 2010</td>
<td>Appendix A-4; updated sensor counts to include PAR sensors on Pioneer AUVs and Gliders; Corrected sensor counts for Pioneer Surface-Piercing Profiler moorings and Endurance Washington Profiler Moorings; updated Profiler and Benthic Node nomenclature. Clerical update of Appendix A-3 updated membership table.</td>
<td>S. White, A. Ferlaino, ECR # 1303-00063 and ECR # 1303-00065</td>
</tr>
<tr>
<td>3-08 April 22, 2010</td>
<td>Appendix A-4: clerical correction to update summary sensor counts in Table 1 to reflect new totals from ECR 1303-00063 and 1303-00065 changes</td>
<td>K. Carr, A. Ferlaino</td>
</tr>
<tr>
<td>3-09 April 7, 2011</td>
<td>Updates throughout</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>3-10 April 11, 2011</td>
<td>Incorporates Risk, Quality, O&M edits</td>
<td>E. Griffin (coordinator); G. Settle, M. Zernick, M. Antonucci</td>
</tr>
<tr>
<td>3-11 April 12, 2011</td>
<td>Incorporates edits throughout</td>
<td>E. Griffin (coordinator); T. Cowles, S. Banahan, E. Chapman, K. Carr, M. Neely, A. McCurdy</td>
</tr>
<tr>
<td>3-12 April 13, 2011</td>
<td>Additional edits</td>
<td>A. Ferlaino</td>
</tr>
<tr>
<td>3-13 April 13, 2011</td>
<td>Section 3.3, Appendix A-4</td>
<td>R. Weller, L. Brasseur</td>
</tr>
<tr>
<td>3-14 April 18, 2011</td>
<td>Edits in response to comments on ECR 1300-00165</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>3-15 April 19, 2011</td>
<td>Additional edits in response to comments on ECR 1300-00165</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>3-16 April 22, 2011</td>
<td>Update Appendix A-5</td>
<td>B. Pritchett</td>
</tr>
<tr>
<td>3-17 July 6, 2011</td>
<td>Administrative change replacing “sensor” with “instrument” in Appendix A-4</td>
<td>E. Chapman</td>
</tr>
<tr>
<td>3-18 Apr 19, 2012</td>
<td>Minor updates throughout</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>3-19 May 2, 2012</td>
<td>Updated org charts, continued edits</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>3-20 May 7, 2012</td>
<td>Incorporates edits for Sect 3.5</td>
<td>E. Griffin, A. Vitucci</td>
</tr>
<tr>
<td>3-21 May 16, 2012</td>
<td>Edits to sections 2.3, 3.8, 3.9</td>
<td>E. Griffin, E. Chapman, M. Zernick, G. Settle</td>
</tr>
<tr>
<td>3-22 May 22, 2012</td>
<td>Edits to sections 3.11, 5.2</td>
<td>E. Griffin, S. Banahan</td>
</tr>
<tr>
<td>3-23 May 31, 2012</td>
<td>Edits to sections 5.1</td>
<td>E. Griffin, S. Ashaari</td>
</tr>
<tr>
<td>3-24 June 7, 2012</td>
<td>Copy edits, formatting</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>3-25 June 20, 2012</td>
<td>Resolution of liens, ECR 1300-00262</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>3-26 June 26, 2012</td>
<td>Resolves remaining liens, ECR 1300-00262; Copy edits, formatting</td>
<td>E. Griffin, E. Chapman</td>
</tr>
<tr>
<td>3-27 July 11, 2012</td>
<td>Added material pertaining to Commissioning</td>
<td>E. Chapman</td>
</tr>
<tr>
<td>3-28 Oct 15, 2012</td>
<td>Incorporated responses to comments from ECR 1300-00271</td>
<td>E. Chapman</td>
</tr>
<tr>
<td>3-29 Nov 7, 2012</td>
<td>Incorporates comments and resolves liens, ECR 1300-00309</td>
<td>E. Griffin</td>
</tr>
<tr>
<td>3-30 Oct 16, 2013</td>
<td>Incorporates changes to CI. Periodic update to incorporate</td>
<td>E. Chapman</td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Changes</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>3-31</td>
<td>Oct 28, 2013</td>
<td>Updates to Environmental compliance section. Updates to Org charts</td>
</tr>
</tbody>
</table>
Table of Contents:

Document Control Sheet ... i

Executive Summary .. 1

1 Overview .. 1
 1.1 Scientific Goals ... 3
 1.2 Technical Description ... 6

2 Construction Approach .. 9
 2.1 Design and Development Strategy .. 9
 2.2 Construction and Installation Strategy ... 9
 2.3 Transition to Operations Strategy and Commissioning ... 10

3 Project Management .. 10
 3.1 Management and Oversight Structure .. 10
 3.2 Community Advisory Structure .. 11
 3.3 Interagency and International Partnerships ... 12
 3.4 Work Breakdown Structure (MREFC Construction) ... 14
 3.5 Cost and Schedule Management ... 15
 3.6 Financial Management ... 18
 3.7 Configuration Management and Change Control ... 18
 3.7.1 Requirements Management ... 18
 3.7.2 Interface Management .. 21
 3.8 Data Management .. 21
 3.9 Quality Assurance and Quality Control ... 22
 3.10 Risk and Opportunity Management ... 23
 3.11 Environmental Health and Safety .. 24
 3.12 Permits and Environmental Compliance ... 24
 3.12.1 Environmental Compliance ... 24
 3.12.2 Permitting Responsibility .. 25
 3.13 Testing and Evaluation ... 26
 3.14 Annual Work Plans .. 26
 3.15 Document Control and Reporting ... 27
 3.16 Contingency Management ... 27
 3.17 IO Selection, Performance Management, and Acquisition Planning 29
 3.17.1 Selection of IOs: Marine Infrastructures, Cyberinfrastructure, and Education and Public Engagement Infrastructures ... 29
 3.17.2 Management of IO Subaward Performance .. 29
 3.17.3 Acquisition Planning for New Subawards .. 30
 3.18 Property Management ... 30

4 Security ... 31
 4.1 Physical Security ... 31
 4.2 Cyberinfrastructure Security .. 31
 4.3 Operational Security .. 32

5 Operations and Maintenance ... 32
 5.1 Operations and Maintenance Planning ... 32
 5.2 Science Planning .. 33

6 Reviews ... 35

Appendix A-1: Documents Incorporated by Reference .. 36
Appendix A-2: Acronym List ... 37
Appendix A-3: Current Membership, Program Advisory Committee 39
Appendix A-4: Technical Summary .. 40
Appendix A-5: PMO and IO Organizational Structure 48
Executive Summary

The Ocean Observatories Initiative (OOI) project is constructing an interactive, globally distributed, and integrated network of ocean nodes that create an observatory enabling transformational, complex, interdisciplinary ocean science.

The National Research Council (NRC) recommended that the OOI management structure should be one in which the day-to-day operation of different OOI elements is the responsibility of entities with appropriate scientific and technical expertise, while the role of the program management organization should be one of coordination, oversight, and fiscal and contract management. In 2004 NSF signed a cooperative agreement with the Joint Oceanographic Institutions (JOI), now the Consortium for Ocean Leadership, for the establishment of a project office to coordinate the OOI activities. This resulted in the creation of the current OOI Program Office. Through competitive bid processes, Ocean Leadership has signed subawards with five implementing organizations (IOs) to conduct the detailed design, engineering, construction, testing, and operation of the different OOI elements.

The OOI Project Execution Plan (PEP) describes how Ocean Leadership manages the OOI project. OOI construction is funded by the National Science Foundation (NSF) through its Major Research Equipment and Facilities Construction (MREFC) account. The Large Facilities Office at NSF has set out guidelines for the management of MREFC projects, and the PEP attempts to be responsive to the spirit of those guidelines.

In this spirit, Ocean Leadership conducts design reviews at appropriate times within each Implementing Organization’s schedule of activities.

This version of the PEP reflects the changes that have occurred within the project since the start of construction, while maintaining the basic structure and scope approved by the National Science Board (NSB) in May 2009. It will continue to be modified, under the change control process, as the project moves forward. The PEP incorporates a number of existing (or planned) supporting documents by reference. This allows the supporting documents to be updated without impacting the PEP. A list of program documents supporting this PEP is found in Appendix A-1.

1 Overview

The Ocean Observatories Initiative (OOI) Project Execution Plan (PEP) is viewed as a living document and is updated throughout the development and implementation phases of the OOI. This version of the document represents the project during construction execution in Year 5 of the five and one-half year schedule. Subsequent versions will be issued as the project reaches critical milestones or when external factors, such as final decisions on each year’s federal budget, materialize. Substantive changes to the PEP, following major reviews or significant project changes are sent to the cognizant NSF program officer for written approval, following approved modifications via the OOI Change Control Board process.

The OOI Program will conduct transformational ocean science using an integrated ocean observatory with a network of interactive nodes studying interrelated ocean processes on coastal, regional, and global spatial scales and over a range of time scales, from microseconds to decades. NSF funds the planned facility through its MREFC account. The OOI is an outgrowth of scientific planning efforts by the national and international ocean research communities over the past two decades and is motivated in part by rapidly expanding development of computational, robotic, communications, and sensor capabilities.
The OOI program is managed through the OOI Program Office housed within OL in Washington, D.C. Ocean Leadership is a not-for-profit corporation of member institutions (universities or other nonprofit institutions, organizations, or governmental entities involved in oceanographic sciences or related fields and that are organized for educational or scientific purposes). Ocean Leadership has contracted with five implementing organizations (IOs) for the development, construction, and operation of the OOI. The Woods Hole Oceanographic Institution (WHOI) is the IO for the global nodes and the Pioneer Array, Oregon State University (OSU) for the Endurance Array, the University of Washington (UW) for the regional nodes, the University of California, San Diego (UCSD) for the cyberinfrastructure that connects the nodes together into an integrated observatory, and Rutgers University for building related education and public engagement infrastructure. Figure 1 shows the responsibilities of OL and each IO in the execution of the OOI project. Each IO has developed a PEP covering its responsibilities. These subordinate PEP documents are consistent with this OOI PEP and are incorporated by reference in accordance with Appendix A-1.

![OOI Organizational Chart](image)

The 2009 baseline technically driven funding profile and allocation was developed under NSF’s guidance:

<table>
<thead>
<tr>
<th>IO / Project Year</th>
<th>PY 1</th>
<th>PY 2</th>
<th>PY 3</th>
<th>PY 4</th>
<th>PY 5</th>
<th>PY 6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Office</td>
<td>8.5</td>
<td>6.6</td>
<td>5.9</td>
<td>5.4</td>
<td>5.1</td>
<td>-</td>
<td>31.5</td>
</tr>
<tr>
<td>Contingency</td>
<td>49.1</td>
<td>31.9</td>
<td>6.5</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>88.0</td>
</tr>
<tr>
<td>Cyber IO</td>
<td>8.8</td>
<td>7.9</td>
<td>7.4</td>
<td>5.8</td>
<td>4.3</td>
<td>-</td>
<td>34.1</td>
</tr>
<tr>
<td>Coastal/Global IO</td>
<td>19.0</td>
<td>19.2</td>
<td>43.4</td>
<td>13.9</td>
<td>6.3</td>
<td>-</td>
<td>101.9</td>
</tr>
<tr>
<td>Regional IO</td>
<td>40.6</td>
<td>44.8</td>
<td>18.9</td>
<td>20.4</td>
<td>2.6</td>
<td>-</td>
<td>127.4</td>
</tr>
<tr>
<td>Education IO</td>
<td>0.0</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
<td>1.7</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>Total OOI</td>
<td>126.1</td>
<td>110.7</td>
<td>82.8</td>
<td>46.8</td>
<td>20.0</td>
<td>-</td>
<td>386.4</td>
</tr>
</tbody>
</table>

Note: Post award $20 million funding was transferred from PY2 to PY3.
The funding profile and allocation above was derived from a technically driven implementation schedule and based upon a rolled-up costing of approximately 900 individual work packages. The funding profile in this chart includes approximately 30% contingency. The contingency value was calculated as part of the bottom-up cost estimate contained in the OOI Cost Book (20%) and the OOI Risk Register (10%), both held by Ocean Leadership. The Cost Book-based contingency value is held and managed at the OOI overall project level. The funding profile above includes funds required to commit contracts prior to the year in which payment is made. The technically driven implementation schedule is dependent on NSF funding continuity. In the funding profile table (previous page), PY6 consists of six months of construction schedule float ending in February 2015, with all funding provided by PY5.

The OOI website (http://oceanobservatories.org) serves as a baseline source of community information about the program. The website includes information and documents regarding the management, science planning, design refinement and other news related to the OOI.

1.1 Scientific Goals

The vast oceans, which cover two-thirds of our planet, largely determine the quality of life on Earth and are the last unexplored frontiers on our planet. The complex interacting environments and processes that operate within the world’s oceans modulate both short-term and long-term variations in climate, harbor major energy and raw material resources, contain and support the largest biosphere on Earth, significantly influence rainfall and temperature patterns on land, and occasionally devastate heavily populated coastal regions with severe storms or tsunamis. Phenomena such as global climate change and El Niño events, and natural hazards such as hurricanes and tsunamis have enormous global economic and societal impact.

Many earth and ocean processes occur at temporal and spatial scales not effectively sampled using traditional ship-based or satellite-based observations. Such processes run the spectrum from episodic, short-lived events (earthquakes, submarine volcanic eruptions, severe storms), to longer-term changes or emergent phenomena (ocean circulation patterns, climate change, ocean acidity, ecosystem trends). The need for sustained ocean observations has long been recognized by the ocean science community and was re-affirmed in 2004 by the U.S. Commission on Ocean Policy in its report (http://www.oceancommission.gov/).

The overarching goal of NSF’s OOI is to advance the investigation of complex earth and ocean processes by providing access to next-generation (i.e., transformational) technologies to support interactive and adaptive observatory science. The NSF’s MREFC account supports the construction of an integrated observatory network to operate as a “permanent observational presence” in the ocean. The OOI Network will provide scientists with unique opportunities to conduct multi-disciplinary studies of linked atmosphere-ocean-earth processes over timescales of seconds to decades, and spatial scales of millimeters to thousands of kilometers.

The OOI will transform research of the oceans by establishing a network of interactive, globally distributed instruments with near real-time data access. Recent technological advances in sensors, computational speed, communication bandwidth, Internet resources, miniaturization, genomic analyses, high-definition imaging, robotics and data assimilation-modeling-visualization techniques are opening new possibilities for remote scientific inquiry and discovery. The OOI will enable innovative developments across all of these fields and will contribute to maintaining American leadership in scientific advancement as well as providing excellent educational opportunities. The OOI is the NSF’s major contribution to the broader national and international efforts to establish the U.S. Integrated Ocean Observing System (IOOS) and the Global Earth Observation System of Systems (GEOSS), respectively.
The OOI is the result of almost twenty years of community planning. The scientific goals (i.e., the high-priority-research topics and questions) and types of infrastructure required to address those scientific goals are based on recommendations contained in more than thirty planning documents, including workshop reports, interagency reports, and two National Academy of Sciences publications. A more detailed description of OOI development and science goals is available in the OOI Science Prospectus titled *The Ocean Observatories Initiative Scientific Objectives and Network Design: A Closer Look*. As summarized in the OOI Science Prospectus and the earlier *Ocean Observatories Initiative Science Plan*, the scientific goals of the OOI are to provide the necessary infrastructure to enable profound advancements in the following research areas:

- Ocean-Atmosphere Exchange
- Climate Variability, Ocean Circulation, and Ecosystems
- Turbulent Mixing and Biophysical Interactions
- Coastal Ocean Dynamics and Ecosystems
- Fluid-Rock Interactions and the Subseafloor Biosphere
- Plate-Scale, Ocean Geodynamics

The design goals established in the National Research Council (NRC) report *Enabling Ocean Research in the 21st Century: Implementation of a Network of Ocean Observatories* are the guiding principles applied to the OOI Network design to ensure that OOI capabilities will address the science goals. Those guiding principles are: (1) continuous observations at high temporal resolution for decades; (2) spatial measurements on scales ranging from millimeter to kilometers; (3) the ability to collect data during storms and other severe conditions; (4) two-way data transmission and remote instrument control; (5) power delivery to instruments between the sea surface and the seafloor; (6) standard instrument interfaces; (7) autonomous underwater vehicles (AUV) docks for data download and battery recharge; (8) access to facilities to deploy, maintain, and calibrate instruments; (9) an effective data management system that provides open access to all; and (10) an engaging and effective education and outreach program that increases ocean literacy.

The series of planning activities leading up to release of the *OOI Conceptual Network Design* (CND) and the *OOI Preliminary Network Design* (PND) have involved the efforts of hundreds of ocean scientists, computer scientists, engineers, and educators spanning 130 research and education institutions. The *OOI Final Network Design* (FND) has been refined from the OOI PND to define, with higher confidence, the financial resources and schedule needed to accomplish the technical baseline. The technical baseline has been adjusted slightly to align, with higher confidence, with NSF’s guidance on anticipated Operations and Maintenance funding. Other changes have been introduced to reduce risk and include technical information gained through several Requests for Proposal and Requests for Information. Changes were introduced to better align system capability with the lower level system requirements defined since Preliminary Design Review (PDR) in November 2007. Following Final Design Review (FDR), NSF requested specific changes to enhance the capability of the OOI to address the current need for better understanding of the ocean’s role in the global carbon cycle and climate change, ocean acidification, ocean health and marine ecosystems. These changes in capability were approved by the NSB in May 2009.

The OOI facility incorporates marine infrastructure to observe the ocean over spatial and time scales relevant to a diverse and interconnected environment; it is organized operationally by subsystems. The major subsystems of the OOI Network are the Global Scale Nodes (GSN), the Regional Scale Nodes (RSN), the Coastal Scale Nodes (CSN), the integrating Cyberinfrastructure (CI), and the Education and Public Engagement (EPE) Infrastructure. Together these subsystems provide the unique capability to address high-level questions such as how the ocean responds to the two basic stressors on the planet – heat from above in the form of solar radiation, and heat from below in the form of geothermal heat. Another high-level question that will be addressed by the integrated capabilities of the OOI includes how climate change and
variability will influence diverse ocean ecosystems and how CO$_2$ uptake and ocean acidification are changing ocean properties.

The GSN supports air-sea, water-column, and seafloor instruments operating in remote, but scientifically important locations. The scientific goals are to provide observations of processes at critical high-latitude sites for which little or no time series data exist: air-sea interactions and gas exchange, the global carbon cycle, ocean acidification, and global geodynamics.

The RSN enables studies of water column, seafloor, and sub-seafloor processes using high-powered, high-bandwidth instrument arrays cabled to shore. The science drivers of the RSN are investigations into the structure of Earth’s crust; seismicity, magmatism, and deformation across the Juan de Fuca Plate; water, heat, and chemistry fluxes of hydrothermal systems; benthic ecosystems; circulation and mixing at gyre boundaries; biogeochemistry and ecosystem dynamics.

The CSN supports long-term and high space-time resolution observations to understand the physics, chemistry, ecology, and climate science of key regions of the complex coastal ocean. The scientific goals include providing observations of phenomena such as: variability in complex eastern and western boundary current systems; coupling between coastal physics and biology, including nearshore fisheries and biological regime shifts; coastal carbon budgets; terrestrial-oceanic transport of carbon, nutrients, sediments, and fresh water; shelf, shelfbreak and slope exchanges; and coastal hazards such as storms, tsunamis, and hypoxia.

These three elements of the OOI marine infrastructure provide the unique new observations that when taken together with existing observations integrate to form the observing capability needed for the high-level science questions. For example, air-sea exchange at critical high latitude sites, where present current uncertainties in understanding are large and no sustained observatory capability exists, will be quantified by the GSN. Key western and eastern boundary current regimes that play a role in meridional (longitudinal) transports and are recipients of manifest climate signals from the poles and the equator will have comprehensive sampling be sampled by the CSN. The RSN will instrument the sea floor and observe its interaction with the slow, deep flow that completes the large-scale circulation pathways. Hypotheses about ecosystem change can be tested in contrasting regimes being sampled simultaneously: the high-latitude open ocean where strong climate signals are now seen, the benthic ocean that should be isolated from the immediacy of changes in surface fluxes, and the coastal ocean that displays the effects of shelf topography, exhibits strong water mass property gradients, and responds to the propagation of signals from polar and equatorial regimes as well as to basin scale processes.

The OOI’s broadly distributed, multi-scale network of observing assets are bound together by an interactive CI backbone that will link the physical infrastructure elements, instruments, and data into a coherent system of systems. The CI supports the OOI science goals by providing a range of capabilities to operators and end users. In accordance with the OOI data policy, calibrated data will be made publicly available with minimal delay.

The OOI will also enable the effective translation of its capabilities and results into forms more readily usable by students, educators, workforce participants, and decision-makers via an education and public engagement (EPE) infrastructure. The EPE infrastructure was designed in response to Education User Requirements that are closely related to standard ocean literacy principles. The requirements focus on the need for tools such as web-based interfaces, interactive visualization of data streams, simulations from simplified ocean models, merging with non-OOI databases, virtual participation in OOI science activities, a comprehensive database of education-relevant products with interfaces that are appropriate for cultural diversity, and social networking to enable collaborative workspaces.

The OOI promises to transform ocean sciences and open entirely new avenues of research, encourage the development and application of new sensors and technologies, provide new opportunities to convey the importance of the oceans to students and the general public, and provide essential information for decision-makers responsible for developing ocean policy.
1.2 Technical Description

The infrastructure provided to research scientists through the OOI includes the cables, buoys, deployment platforms, moorings and junction boxes, required power, and two-way data communication to support a wide variety of instruments at the sea surface, in the water column, and at or beneath the seafloor. A core suite of 47 instrument types chosen to best answer questions based on the science themes and distributed across the platforms is also included. The initiative also includes components such as unified project management, a CI for data capture, dissemination and archiving, and education and public awareness activities essential to the long-term success of ocean observatory science.

At completion, the OOI observatory system will have the capabilities to provide:
- Continuous observations over a range of time scales of seconds to decades
- Spatial measurements on scales ranging from millimeters to kilometers
- Sustained operations during storms and other severe conditions
- Real-time or near-real-time data as appropriate
- Platform and instrument control
- Acquisition, distribution, and archival of data
- Power delivery to instruments between the sea surface and the seafloor
- The usage of gliders and autonomous underwater vehicles (AUVs) to expand the footprint of measurements at selected sites
- Facilities for instrument maintenance and calibration
- A data management system that makes data publicly available
- Infrastructure enabling effective education and public engagement activities
- Expansion of the system (space, power, bandwidth and technical support) to host new instruments and sensors.

The OOI facility will comprise networked marine infrastructure with integrating cyberinfrastructure and related education and public engagement infrastructure. The marine infrastructure will collect data over spatial and temporal scales relevant to a diverse and interconnected ocean environment through a loosely grouped set of costal, regional, and global scale nodes. These subsystems of the OOI provide platforms for multi-disciplinary observations and experiments:
1. CSN: New observing facilities in contrasting coastal boundary current regimes on the East and West Coasts of the U.S.
2. RSN: A regional electro-optical cabled network consisting of interconnected sites on the seafloor spanning multiple geological and oceanographic features and processes. The RSN is linked to the Coastal Endurance Array to provide power and bandwidth at two locations on that array.
3. GSN: Autonomous moored buoy platforms at four deep water, high-latitude locations are key to capturing large-scale ocean-atmosphere coupling where there has been little or no previous sustained coverage.

The subsystems are integrated through the CI, which provides connections to scientists and classroom, and allows the OOI to function as a single, secure, integrated network.
Figure 2. OOI Integrated Observatory.

Figure 2 shows the different operational domains that together form the OOI Integrated Observatory. The marine observatories each represent a separate operational domain, both connected to the operational domain maintained by the CI IO, representing the Integrated Observatory to its users. The EPE infrastructure will be an integral component of the OOI Network. Most end users interacting with the integrated observatory, such as scientist and education teams, define their own operational domains. The lines and clouds in Figure 2 represent communication networks and the nodes represent physical sites with computation and storage resources.

The OOI's marine infrastructure comprises mixed arrays of moorings and/or seafloor cables and will provide the capacity to make continuous observations at appropriate scales to investigate process studies of highest priority to the research community. These continuous observations will be augmented by the use of mobile platforms such as underwater gliders and AUVs to capture the spatial distribution of environmental variability around the fixed sites. The OOI construction investment will provide an initial set of core instruments tied to the science user requirements defined during the design process. Additional instruments will be added to the OOI observing platforms via experiments funded by the NSF or other research sponsors.

The CSN will provide sustained, adaptable access to investigate dynamic and heterogeneous processes in contrasting coastal systems. The infrastructure constructed will be a mix of “permanent” stations to document long-term variability and a “relocatable” mooring array targeted towards high frequency, spatially-variable environmental processes. The initial setting for the relocatable Pioneer Array is in the mid-Atlantic Bight off the southern coast of New England while the fixed coastal Endurance Array is off the Oregon and Washington coastline. The OOI FND provides additional details on the OOI’s coastal-scale platforms. A combination of moorings and mobile platforms will be used; gliders will be deployed at Endurance and both gliders and AUVs at Pioneer.

The RSN will instrument two areas of the Juan de Fuca tectonic plate in the Northeast Pacific Ocean. The NEPTUNE (NorthEast Pacific Time-series Undersea Networked Experiments) Canada array is operating on the northern third of the same plate. Together these two systems will monitor the Juan de Fuca plate to allow the science community to conduct experiments. Permanent electro-optical seafloor cables will connect instrumented seafloor nodes and will
Project Execution Plan

provide power (tens of kilowatts) and high bandwidth (data transfer rates of gigabits per second) for sensors, instruments, and underwater vehicles. This high power and bandwidth capability will allow experimental access from below, on the seafloor, within the water column, and across the air-sea interface. The FND provides additional details on the OOI’s regional-scale assets.

The GSN comprise a set of highly capable interactive moored arrays combining different types of buoys focused on high latitude locations where surface and water column ocean data needs are greatest and air-sea interactions play a critical role in understanding ocean circulation. At three of the four sites GSN will provide a robust, self-powered, telemetering buoy providing ample data-return rates and improved power capacity. At the fourth site, the Gulf of Alaska, the surface buoy will be provided by the National Oceanographic and Atmospheric Administration (NOAA). Adjacent to each surface mooring, GSN will provide a hybrid profiler mooring. Each global scale node has a distributed footprint, occupying a triangular region, with two additional flanking moorings located about 50 km from the primary site and mobile assets (gliders) providing a broader context by resolving the mesoscale field in which the sites are embedded. The FND provides additional details on the OOI’s global-scale assets.

The OOI CI will allow users, through its monitoring and control center element, to quickly alter the configuration of their instruments, to perform in situ experiments, and to access data in near-real time from anywhere in the system, thereby enabling rapid adjustments to sampling strategies. The OOI Network software is being built to ensure the OOI operates as a secure and integrated observatory. The CI section of the FND provides additional detail on this OOI subsystem.

The EPE infrastructure will be designed in response to Education User Requirements. It is anticipated that the EPE infrastructure will provide tools for visualizations and simulations, enable virtual participation and mergers with other databases, and build a social networking capacity for EPE users.

The detailed FND describing each of the OOI subsystems is incorporated by reference into this PEP. The scope of each OOI subsystem is summarized in Appendix A-4.

The OOI is designed to be a network that can be interconnected to provide different capabilities. The requirement that each set of nodes operates seamlessly within the network adds complexity above that encountered in a large-scale, interdependent system, but this yields an enhanced set of capabilities in spatial scale and instrument distribution not available without the integrated network. It is this capability that will allow many of the transformational experiments to be accomplished.

New instruments and nodes may be integrated into the expandable OOI Network following commissioning; similarly, old experiments and instruments may be removed. Changes to the configuration of the OOI will be made through well-defined approval processes, in coordination with the National Science Foundation and external advisory committees.
2 Construction Approach

The NRC, in its report *Enabling Ocean Research in the 21st Century*, recommended that the approach to the OOI management structure should be one in which the day-to-day operation of different OOI elements is the responsibility of entities with appropriate scientific and technical expertise, while the role of the program management organization should be one of coordination, oversight, and fiscal and contract management. NSF signed a cooperative agreement with the Joint Oceanographic Institutions (JOI), now Ocean Leadership (OL), for the establishment of a project office to coordinate ocean observing activities in 2004; a new cooperative agreement was signed on September 1, 2009 for the 5 ½ year construction phase and two years of initial operations.

A competitive bid process in 2007, led to three subawards from Ocean Leadership for development and implementation of the OOI. The Cyberinfrastructure subaward was made to UCSD. WHOI received a subaward for the development and implementation of global and coastal arrays, with Scripps Institution of Oceanography and Oregon State University as subawardees. The University of Washington received a subaward to develop and implement the RSN infrastructure (seafloor cabled infrastructure and moorings). Another competitive process resulted in the award of the Education and Public Engagement component to Rutgers University in March 2011. During 2012, an adjustment was made to the subaward structure for coastal work, with responsibility for the Pioneer Array at WHOI and responsibility for the Endurance Array at Oregon State University.

OL coordinates the work of the IOs and provides a single point-of-contact to NSF. OL has implemented a system engineering and program management team with representatives from each subawardee. The OL project staff (Project Manager, System Engineer and Contracting Officer’s Technical Representatives (COTRs)) use this team to coordinate the technical development, share best practices, and agree on interfaces, requirements, schedules and cost estimates. As the system develops, this team will be instrumental in resolving interface issues so that an integrated system is designed, constructed, and tested by learning from each group’s experience.

2.1 Design and Development Strategy

OL’s System Engineer worked with systems engineers at each of the IOs to define component requirements and interface requirements with the other IOs. OOI Requirements were updated and drove the final designs of the OOI elements developed by the IOs. All requirements were captured in a Dynamic Object Oriented Requirements System (DOORS) database and are under configuration control.

2.2 Construction and Installation Strategy

Each IO contracted with one or more entities for the construction and installation of its elements of the OOI, or constructs some elements of the system with internal capabilities. During the OOI planning phase detailed specifications were prepared and bids or information was received from industry to help validate the designs developed. In advance of construction, specific funding contracts have been awarded so that detailed engineering work on the particular components could be started. Each IO conducts periodic reviews with the suppliers and with Ocean Leadership for contract management and coordination. As construction begins, each physical OOI component will conduct integration testing prior to installation.

During the development of the final design, the sequencing of the acquisition of the major components was analyzed with the intent to reduce program risk. The planned profile is based on a technically limited approach to procuring the OOI. The critical path through the acquisition of the system is analyzed and described in a separate document, the Critical Path Analysis Report, and
is re-evaluated for each major revision of the Integrated Master Schedule (IMS). Progress along
this path is carefully monitored by the management systems and personnel.

2.3 Transition to Operations Strategy and Commissioning

The OOI is a distributed network of marine nodes. Some of the nodes are cabled. The
remainder of the nodes are either tethered moorings or autonomous vehicles, both of which link
back to the network via wireless communications. The network supports control of the nodes and
capture of the data returned from each instrument. The build plan for the system is set to deliver
both infrastructure and instruments incrementally throughout the 5 1/2-year MREFC period. As
each new component is installed, verified, and validated, it will be transitioned to an initial
operational status. The operation, maintenance and calibration of that component will then
transition to operation and maintenance funding.

The OOI Commissioning Plan provides a detailed explanation of the transition from construction
to operations and the Commissioning of components on the OOI. That document explains that
the transition to operations is a multi-step process culminating in a Commissioning milestone.
The Commissioning milestone certifies that the element or array is ready for use in routine
operations, that standard operating procedures and logistics are finalized and documented, and
that operations staff has been trained.

Each IO will be responsible for supporting the commissioning of its element of the OOI. As part
of the Commissioning process, an integrated system test will be conducted to ensure that all
marine nodes connected through the CI can act as a single integrated system. Operation of the
individual elements of the OOI will be the responsibility of the IOs for an initial period covered in
their subawards.

Detailed explanations of the OOI testing, acceptance, and commissioning processes may be
found in the OOI Commissioning Plan, OOI Quality Assurance and Quality Control Plan, and OOI
Test and Evaluation Strategy. The OOI Test and Evaluation Strategy (DCN 1150-00000)
describes the activities for verification and validation testing of OOI elements. The OOI
Commissioning Plan (DCN 1004-00000) describes the transition from construction to operations
and the activities for commissioning OOI elements and arrays. The OOI Quality Assurance and
Quality Control Plan (DCN 1003-00000) describes QA’s role. The Tracked Design Item Table
(DCN 1100-00003) lists the items that will be Accepted and Commissioned. The OOI Data
Management Plan (DCN 1102-00000) and its subordinate documents describe the policies and
procedures related to science and engineering data captured before and after Commissioning.
Each Tracked Design Item will have an Acceptance and Commissioning Plan that lists the
timeline and criteria that are specific to the element in question.

3 Project Management

The OOI project management approach has been organized to conform to MREFC guidance
contained in the various NSF management and oversight documents while providing a structure
that will efficiently deliver the required elements of the OOI. The Program Director for Ocean
Observing Activities at OL has overall responsibility for the oversight of the OOI project. In
addition, OL has appointed COTRs who have overall responsibility for the oversight of each of the
IOs.

3.1 Management and Oversight Structure

Construction of the OOI facility is managed through a cooperative agreement between the NSF
and OL, a not-for-profit corporation of member institutions (universities or other nonprofit
institutions, organizations, or governmental entities involved in oceanographic sciences or related fields and that are organized for educational or scientific purposes). OL was formed in 2007 by the merger of two longstanding ocean-focused not-for-profit corporations, Joint Oceanographic Institutions (JOI) and the Consortium for Oceanographic Research and Education (CORE).

Ocean Leadership is a 501(c) 3 limited liability corporation constituted under the laws of the State of Delaware. OL membership includes both voting and non-voting members as well as non-voting associate members and affiliates. A Board of Trustees, which is elected by the voting members, has oversight responsibility for the corporation and its programmatic commitments.

OL’s Program Director for Ocean Observing Activities is the Principal Investigator (PI) on the cooperative agreement. NSF has approval authority over candidates for this position, which has been filled by a doctoral-level scientist with research experience and experience in constructing and managing complex science facilities. The Program Director for Ocean Observing Activities holds primary responsibility for execution of the program and is considered a single point of authority by the NSF. The Program Director for Ocean Observing Activities directly or indirectly supervises all OOI Program Office personnel and holds or delegates technical approval authority on all subawards made from the OOI cooperative agreement.

The primary development and implementation of the OOI facility is being carried out by five subawardees, which are led by research or educational institutions. The existing IOs are responsible for the CI, RSN, CGSN, and EPE; they were awarded to the UCSD and partners, UW, WHOI and its partner Scripps Institution of Oceanography, Oregon State University and Rutgers, respectively. Authority and responsibility is transferred to the institutions via corporate subawards from OL, which flows down required clauses from the parent cooperative agreement and cooperative support agreements with NSF. The Program Director for Ocean Observing Activities and NSF have approval authority over candidates for the Principal Investigator (PI) and other key personnel of each subaward as stipulated in the cooperative agreement; the IO PIs hold responsibility and authority for work carried out under the subaward or convey it to their staff. They hold or delegate responsibility for technical approval of work carried out under acquisitions made from the IO subawards.

The OOI Program Office is responsible for integrating the work of the IOs and other subawardees developing the OOI facility, guiding and monitoring their progress and compliance with annual work plans and budgets, and assuring and issuing modifications to the IO subawards as necessary for the implementation of the program. The OOI Program Office is responsible for systems integration of the OOI facility, overall compliance with user requirements, adjudication between IOs, formal reporting to the NSF, and representing the program with a single voice to the NSF and the scientific community. The Program Director for Ocean Observing Activities and IO PIs form the management team of the program and generally makes decisions by consensus with input from the community advisory structure; however, the Program Director for Ocean Observing Activities has the authority and responsibility to make executive decisions in consultation with the NSF when necessary.

PMO and IO organizational charts are attached in Appendix A-5.

3.2 Community Advisory Structure

Ocean Leadership manages the planning and construction of the OOI with comprehensive science advice from an advisory structure broadly based in the oceanographic research community. The advisory structure will play a leading role in setting the strategic direction of the facility and will also help devise facility governance polices, participate in decisions on change control, serve as a consultative body of experts for specific questions as implementation proceeds, and provide guidance to ensure that the OOI facility is aligned with the research needs and interests of the science and education communities. The advisory structure will also develop partnerships with other organized ocean and earth science research programs, potential sponsoring agencies, and other entities.

Prior to the identification of IOs and the establishment of an adequate science and engineering management staff in the OOI Program Office, program planning was overseen by an initial
advisory structure comprised of approximately 80 science community researchers representing the potential user groups of the eventual facility. This body of volunteers, supported by the OOI Program Office, was largely responsible for development of the CND and the successful completion of CDR. The Program Office worked with the top-level committee from the initial advisory structure, the Observatory Steering Committee, to advise and guide the preparation of the Preliminary Network Design carried out largely by the OOI IOs. In some cases, it was necessary to name interim membership to this committee due to conflicts of interest (overlap) with the staff of the Implementing Organizations.

Since the beginning of significant MREFC capital investment, the planning and development function has been carried out by a fiscally and contractually accountable project management structure. Guidance from an advisory structure appropriate for the construction phase will be sought and incorporated at multiple levels. The construction-phase advisory structure is led by a Program Advisory Committee (PAC). The PAC provides overall strategic planning and science leadership for the OOI facility, is the primary consultative group for the Program Director for Ocean Observing Activities and management team, and is one of the main conduits for community input into the implementation and management of the OOI facility. The PAC will assess community responsiveness to the transformative capabilities of the OOI facility and will provide strategic planning on science programs catalyzed by the OOI. The PAC is populated by individuals representing broad expertise in relevant ocean science disciplines and having significant leadership skills and management experience. The PAC met during the Pilot Period to receive updates on program execution, formulate guidance on the scientific direction of the facility, and consider specific advisory requests from program management. The PAC may also convene via web-enabled meeting utilities and has a designated work space within the project collaboration site, so that the committee can remain in touch with project developments and provide timely perspectives and advice to the Program Office.

PAC members also may serve as a resource pool for specific roles during MREFC execution. For example, PAC representation may be requested at higher level Change Control Boards described in the OOI Configuration Management Plan, and PAC members will be solicited for membership on the Observatory Advisory Team (OAT) described in the OOI Operations and Maintenance Plan.

The PAC formally reports to the Executive Committee of the Board of Trustees of Ocean Leadership. This reporting structure assures both that the ocean research and education community, as represented by the membership of the Consortium for Ocean Leadership, is kept informed of the planning and construction of this emerging new platform, and that the program’s community advisors have access to the top level of the performing organization. The liaison function is maintained by inclusion of one Ocean Leadership trustee in the PAC membership. The initial membership of the PAC was invited from a list of candidate names provided by a nominating committee of community leaders in consultation with NSF’s Ocean Sciences Division. The initial committee membership avoided qualified individuals whose main academic affiliation was with an IO institution, in order to assure unconflicted membership. The Chair was invited by the President and CEO of Ocean Leadership. The committee began its activities in September 2008 and has provided recommendations to the OOI leadership through direct meetings and teleconferences since that time. Current membership is listed in Appendix A-3.

In consultation with and within available resources provided by Ocean Leadership’s Program Director for Ocean Observing Activities, the PAC may form subcommittees or ad hoc advisory groups as appropriate during the construction of the OOI facility. This flexibility ensures that the advisory structure is adaptable to changing program needs, and that funds and human resources allocated for supporting the program’s advisory functions are used effectively.

3.3 Interagency and International Partnerships

The construction of the OOI facility as described in the FND does not require interagency or international partnerships, and no formal fiscally-binding agreements are in place. OOI will, however, provide a foundation for the foundation of numerous, substantial partnerships and synergistic collaborations.
Within NSF programs, the Monterey Accelerated Research System (MARS) cable system was funded by the Ocean Sciences Division and designed and constructed by a consortium led by the Monterey Bay Aquarium Research Institute (MBARI). Using designs that were intended as prototypes for the OOI, MARS deployed an 8-port science node at 891 m depth on a 52 km submarine cable that has been populated with sensor experiments since late 2008. In addition to equipment and design testing, MARS serves as a test bed for operational procedures and policies and interacting with the user community.

Elsewhere within the Geosciences Directorate, data from the EarthScope project, which is devoted to understanding the deformation and evolution of the North American continent and underlying mantle, will dovetail with observations from OOI’s RSN on the Juan de Fuca tectonic plate, which controls the deformation of the Pacific Northwest and the earthquake rupture along the Cascadia Subduction Zone. The Directorate for Biological Sciences’ National Ecological Observing Network (NEON) will use distributed sensors to understand complex, diverse land habitats in the U.S. and will monitor baseline environmental parameters such as temperature, pollutant and trace concentrations, aerosols, and biological productivity on land and in the atmosphere that can tie in OOI’s observations. The NSF Office of Cyberinfrastructure is committed to empowering all aspects of computation and networking necessary to implement many of the developing data-driven environmental programs, and is particularly interested in exploring commonalities among these three large distributed sensor network facilities. The OOI CI will facilitate these objectives by providing open access to all users to the OOI network’s real-time data as well as data in third-party archives to support analyses and modeling.

The Massachusetts Technology Collaborative, an independent economic development organization chartered by the Commonwealth of Massachusetts, has provided $2 million in state funding toward implementation of the OOI’s Pioneer Array by the WHOI partnership. Future additional support is under consideration. Corporate partnerships will be sought at a variety of levels.

The mission agencies NOAA (National Oceanic and Atmospheric Administration) and NASA (National Aeronautics and Space Administration) will also develop partnerships with the OOI in a number of ways. NOAA is the lead agency for the Integrated Ocean Observing System (IOOS), an operationally oriented approach to ocean observing intended to serve societal and national needs. The OOI, NSF’s contribution to IOOS, will directly contribute to IOOS through the development of novel observing, data assimilation, and data management techniques as well as by advancing understanding of ocean phenomena upon which accurate predictions and forecasts important to society depend. Through NOAA support, the cyberinfrastructures for OOI and IOOS will converge to enhance interoperability of these two national systems. At this time, collaboration efforts are focused on 1) adoption of common middleware to aggregate datasets from remote sources and provide services for these datasets including search, format translation, graphing and time standardization; and 2) adoption of a common web server to provide metadata and data access for scientific datasets, building on established technologies and protocols.

NASA is committed to studying climate change and life on other planets. By illuminating unexplored ocean environments, the OOI will be involved in cutting-edge science on both fronts. NASA’s satellite programs will be an important complement to all ocean observing systems, including the OOI Network. Satellite observations provide oceanographers with a unique pseudosynoptic, global perspective of the ocean and will provide context for, and in some cases allow for, extrapolation of OOI Network observations. Observations from satellites remain primarily limited to measuring a limited suite of properties at the air-sea interface and in the uppermost ocean. The OOI Network will provide the larger suite of subsurface time series data that will benefit calibration efforts of satellite data streams and enable “in depth” studies of ecosystem processes.

The U.S. Navy has contributed a great deal to the technologies and methodologies being integrated into the OOI. Examples include the development of mobile platforms (AUVs and gliders), research ships, and command/control of remote systems. The OOI, in turn, will provide data and knowledge essential to operations in the world ocean. The Navy’s historical responsibility for ensuring freedom of the seas will depend increasingly upon access to
oceanographic data, information, and global predictions. This has led to the development of the Littoral Battlespace Sensing, Fusion and Integration, Unmanned Undersea Vehicle program to transition observatory technologies into relocatable networks that will support the Pacific and Atlantic fleets.

Strong formal and informal international connections have evolved over the past decade, most demonstrably with Canada. The Canadian initiatives, NEPTUNE Canada and the associated VENUS (Victoria Experimental Network Under the Sea) program, have implemented cabled observatories on regional and coastal scales off North America. The OOI’s RSN have been designed to complement the NEPTUNE Canada geometry in providing coverage of the Juan de Fuca plate, and the Program Office has regular technical and strategic coordination with the NEPTUNE Canada implementation group. In addition, the Consortium for Ocean Leadership and Ocean Networks Canada implemented a Memorandum of Understanding in March 2010.

The oceanographic observing legacy in the Gulf of Alaska is a rich one, with the historical lead in the area by the Canadians and long-term activity by NOAA’s Pacific Marine Environmental Laboratory (PMEL). The Fisheries and Oceans Canada (DFO) Institute of Ocean Sciences (IOS) in British Columbia has made observations in the Gulf of Alaska at the Station Papa site for decades. At Station Papa, CGSN will collaborate with NOAA PMEL in the maintenance of the long-term Station Papa global site. NOAA PMEL will continue to deploy and maintain a surface mooring while CGSN deploys and maintains the hybrid profiler mooring (a mooring supporting a winched profiler to sample the upper ocean and a deep wire-crawler profiler to sample the deeper depths), the two flanking moorings, and the gliders tasked to the Papa site. Ongoing DFO IOS cruises to the site will provide additional ship-based sampling opportunities and are potentially a resource to assist in glider deployments. CGSN is working with NOAA PMEL and DFO IOS to catalyze and coordinate scientific sampling and programs at and around Station Papa in a continuing effort to sustain and expand observations and understanding in the region.

The Irminger Sea site also has a context of past and ongoing observations and is a location that has been used to track and identify long-term trends in ocean properties associated with climate variability and change. CGSN has engaged the EuroSITES (European ocean time series group) in discussions about their plans for continuing observations by Dutch (NIOZ, Nederlands Instituut voor Onderzoek der Zee) and German (IfMK, Institut fur Meereskunde and der Universitat Kiel) institutions in the Irminger Sea region. Most recently, U.S. and European oceanographers have come together to develop plans for the Overturning in the Subpolar North Atlantic Program (OSNAP), and CGSN is participating in these planning sessions to coordinate sampling at the OOI Irminger Sea site with OSNAP and to examine potential logistical synergies.

The two OOI global sites in the Southern Hemisphere provide the opportunity for scientific and logistical collaboration with Chilean and Argentine oceanographers and oceanographic institutions. The CGSN team is exploring collaborations and capacity building for ocean observing in both Chile and Argentina. Cruise planning for each of the Southern Hemisphere sites has identified the benefits of using of the NSF Polar Programs staging facility in Punta Arenas.

At the multinational level, the Group on Earth Observations (GEO) includes 71 member countries, the European Commission, and 46 participating organizations working together to coordinate a Global Earth Observation System of Systems from existing or new Earth-observing systems. This global community is focused on a future wherein decisions and actions for the benefit of mankind are informed by coordinated, comprehensive, and sustained Earth observations and information. The OOI Network’s advanced capabilities can play a critical role in supplying data, information technology, and knowledge for this global effort.

3.4 Work Breakdown Structure (MREFC Construction)

The Work Breakdown Structure (WBS) provides the framework for the organization of the OOI project effort and defines the work as related to the project objectives, scope of work, and deliverables. It is an indentured list of all the activities, products, components, software, and services to be furnished by Ocean Leadership and the IOs. It is used as a common base for all
project planning, phasing, scheduling, budgeting, cost accounting, and reporting of performance during the life of the project.

The integrated baseline WBS has been developed with the IOs and includes more than 3,000 Summary, Control Account, Work Packages, and Tasks and is shown in Figure 3 at level 3. The top levels of the WBS are structured such that each IO’s work activities can be reported both on a stand-alone basis and as part of the overall integrated OOI Network. As the detail design engineering effort progresses additional tasks may be identified in the lower levels and the WBS updated. Any changes to the WBS are subject to the OOI Configuration Management Plan (CMP) and the OOI Earned Value Management Plan.

3.5 Cost and Schedule Management

Cost and schedule management is conducted using the OOI Earned Value Management System (EVMS). The key EVMS data components include:

- Work Breakdown Structure (WBS)
- Organizational Breakdown Structure (OBS)
- Control Accounts
- Work Packages
- Integrated Master Schedule (IMS)
- Direct & Indirect Rates
- Performance Measurement Baseline (PMB)
- Labor, Material & ODC Actual Costs

The source system for the WBS and the IMS is Microsoft Project. The IMS is comprised of the fully resource loaded OL and IO detailed schedules and the cross project interdependencies. The schedules also include the data necessary to integrate with Deltek Cobra, the EVM engine.

The source system for the PMB and all OOI direct and indirect budgeting rates formerly was Cost Book, an OL in-house budgeting database tool. The current accounting tool is Navision.
Resource and Rate information required for the generation of budgets is stored in the Cobra tool. For each work package, Microsoft Project provides Cobra the start date, duration and resource quantities so that Cobra can apply budgetary rates and derive the fully burdened PMB at the work package level by resource.

The OOI EVMS Earned Value component is Cobra. Cobra takes receipt of monthly actual costs (Actual Cost of Work Performed) from the respective IO and OL accounting systems and monthly schedule status from Microsoft Project, from which Cobra calculates the Earned Value (Budgeted Cost of Work Performed). Cobra uses these components (BCWS, ACWP and BCWP) to calculate standard periodic and cumulative EV metrics and reporting data (e.g., Schedule Variance, Cost Variance) and performance indices (e.g., SPI, CPI, TCPI) which are used to track the progress of the program.

The OOI EVMS reporting and analysis tool is Deltek wInsight. It takes receipt of fully processed EV data from Cobra. wInsight presents EV performance indices in multiple graphical formats. It also compares variances to predefined thresholds and represents the results in simple red, yellow and green indicators. Standard ANSI Cost Performance Reports (CPR) such as the Format 1 and Format 5, which OOI submits to the NSF on a monthly basis, are available from and generated within wInsight.
Figure 4, OOI Earned Value Management Infrastructure, describes the interaction of these tools and key EVMS data components.
3.6 Financial Management

Ocean Leadership has acquired and installed Navision business solutions as its formal project accounting system. This system allows Ocean Leadership to track labor hours and other costs by WBS and meets ANSI/EIA 748 requirements. The system is compatible with the EVMS system that has been selected and standard processes are in place for solid financial controls.

IOs are required to have financial systems that meet Generally Accepted Accounting Principles (GAAP) standards and financial processes in place to meet Office of Management and Budget Circulars A-133 and A-122 guidance and be subject to annual audits. Each of the IOs has accounting systems that range from robust to adequate in reporting capabilities. These systems provide the formal invoicing of the cost incurred by the IOs, which Ocean Leadership combines with its expenses and then submits to NSF.

Procedures and processes have been implemented at each institution to ensure proper tracking of labor, sub-contract, material costs, and assets by WBS. Periodic Financial Status Reports, Close-out Reports, and invoices are used to monitor and analyze progress and provide a basis for reconciling EVMS reports to actual costs.

3.7 Configuration Management and Change Control

The OOI Configuration Management Plan (CMP) has been developed to formally establish the activities, responsibilities, processes and methods used to maintain the configuration of the OOI facility and to manage changes to the scope and design of the facility (CMP, incorporated by reference). The plan provides the background information and outlines the approach to be followed to control the use and modification of the Technical Data Package (TDP) required for the design, manufacture, and deployment of the OOI facility. The plan provides details as to how program documents shall be prepared, configuration management requirements for use, required TDP, quality assurance procedures, and the operation of the design Change Control Boards.

The CMP addresses which key documents are under configuration control, what drawing standards, file formats, and applications are used, naming and numbering conventions, and conventions for hardware documentation. The CMP defines baselines and change classes, and outlines how engineering changes are requested, assessed, and considered. The CMP establishes change control boards at the IO level, system level, and program level, and defines which board level considers what type of change depending on its impact. The CMP defines membership of the change control boards and defines which changes must be forwarded to the NSF for approval.

The Document Management System (DMS) is described in the plan and an overview of the application and the roles of users and managers are also provided. All of the collaboration tools and configuration management tools and applications are described, and the plan details how they are used in the OOI. These tools have advanced features which provide configured enforcement of configuration control policies and procedures as well as provide modification tracking, tracing and security of changes to any controlled information.

3.7.1 Requirements Management

The Executive Steering Committee, later known as the Observatories Steering Committee, developed an OOI Science Plan in May 2005. The plan was further refined and documented in OOI Scientific Objectives and Network Design: A Closer Look in 2007. From this and the outputs of the past decade’s numerous community workshops, the OOI Program Office has developed the OOI requirements set. This set of requirements was manifest in three documents at the preliminary design level, the OOI Science User Requirements (SUR), the OOI Systems Requirements Document (SRD) and the Interface Requirements Agreement (IRA). At PDR the requirements from those sets were migrated to the Dynamic Object Oriented Requirements System (DOORS) to provide configuration control and requirements management. This set of requirements was developed to guide the IOs in the development of their preliminary designs.
Project Execution Plan

This includes some higher-level system requirements as well as a set of requirements for the CI. The SUR represent ten exemplar science questions representative of the science themes that the OOI is being built to address. These themes are a distillation of the science that the oceanographic community, through a series of meetings and workshops, has recommended that a networked ocean observatory have the ability to address. An important requirement driving the OOI design is that the power and bandwidth provided in each element of the infrastructure be expandable/extendable so that during the 25-year planned life of the system additional science questions can be addressed.

As the program matured and additional systems engineering was performed, the requirements process was fully engaged and full requirements hierarchy was developed, and the elicitation and derivation of a full final set of high-level requirements was undertaken and completed for the final design. The science and engineering teams developed full traceability in the requirements structure from the science plan through the traceability matrices down to the measurements required of the OOI. These requirements are grouped into the OOI Science Requirements set.

An important element of system-level stakeholder engagement is the process of eliciting user requirements from representatives of the science and education user communities through formal workshops, technical interchange meetings, or systems engineering work sessions. Stakeholders who have an interest or stake in the outcome of the project have been identified and their needs are the driving force behind the OOI Cyber User Requirements. The primary stakeholders are scientists, modelers, and educators that use the system for a variety of reasons. A series of formal workshops have been conducted to elicit stakeholder requirements.

In order to achieve this goal, IO engineers, scientists and workshop participants constructed a wide range of use scenarios (i.e., operational concepts) and concepts of operations incorporating representative suites of instruments and platforms in close collaboration with a representative group of domain users. Each of the Formal Workshops was crafted to have a particular technical emphasis, and the Cyber User Requirements, System Requirements and Education and Public Engagement Requirements were the products of this branch of the requirements development process. The preliminary SRD was the basis for the system requirements both in the CI and Marine IO domains.

The detailed System requirements have been derived and documented by each IO’s system engineers in collaboration with Ocean Leadership’s System Engineer. The full set of requirements, including subsystems, now resides in the DOORS database as a unified set.
A current pictorial view of the OOI DOORS Requirements Module structure and linkage paths is maintained in the Requirements Module Hierarchy (DCN 1120-00000) (Figure 5 above represents a previous version of the Requirements Module Hierarchy and is included for illustrative purposes only). The Level 2, Level 3, and Level 4 requirements in DOORS are the basis for the OOI design and serve as the reference to validate and verify the design through the test and commissioning process.

OOI follows a standard systems-engineering approach for setting requirements at successive levels of detail, maintaining traceable relationships between them, and testing them appropriately. The relationships between science requirements, system requirements (at all levels), and conformance tests, as well as the systems engineering and configuration management policies are maintained and enforced using the DOORS application.
3.7.2 Interface Management

The OOI design is an integrated, interactive system of systems with major systems covering coastal, regional, and global spatial scales connected via an integrated cyberinfrastructure. The systems will also be linked by common instrument interface types and infrastructure components. The interfaces between systems and users have been grouped into four categories covering three types of interfaces. The interfaces are described in general terms as physical, logical or programmatic. Any of the systems or users may interact through the three types. The groupings of users and systems follow the matrix below:

- CI to CG
- CI to RSN
- CI to EPE
- CG to RSN

The CI “User” requirements were developed with the science and education communities through a series of user workshops convened to ensure utility and relevance of its services. The interface to the community is implicit in the requirements and no “agreement” document was created.

Systems engineers from each IO meet regularly with the OOI System Engineer to integrate the subsystems, and develop and document appropriate interface specifications between OOI elements. The preliminary engineering design effort produced a comprehensive set of subsystem interface requirements, identified a core set of instruments and interface(s), and levied appropriate requirements on instrument designs to ensure non-interference with the infrastructure as well as other instruments. The OOI Interface Requirements Agreements (IRA) were developed for Preliminary Design stage and were applicable to all OOI system and subsystem hardware, software technical data, designs, and software code, and hardware developed or delivered as part of the OOI MREFC project. The IRA defined the roles, responsibilities, and authority of IOs in planning, design, development, and implementation phases relative to the interaction of subsystems and delineation of responsibilities and obligations.

These preliminary level agreements were captured in the IRA document and were the basis for developing the final design, including the detail design engineering and technical data package. As the requirements maturation and deriviation was performed along with the detailed design engineering, the physical and logical “technical” requirements were migrated into the DOORS database so they could be properly linked and allocated with full requirements set. The remaining items were programmatic and are specifically statements of responsibility between the implementing organizations relative to cost and schedule. These “responsibilities” have been integrated into the requirements database as well, and can be exported as Interface Requirements sets.

The product of these requirements and agreements are now imbedded in the foundation of the WBS, schedule, budget, and TDP, providing logical and physical structure to the design, as well as programmatic responsibility. These controlled documents fall under the systems engineering and configuration management policies and are maintained and enforced under the program. The requirements have been and are used to develop Interface Control Documents (ICDs) as part of the Technical Data Package. The ICD development process is detailed in the OOI Systems Engineering Management Plan (SEMP).

3.8 Data Management

The OOI Data Management Plan (DMP) has been developed to formally establish the activities, responsibilities, processes and methods used to gather, process, store, provide, and manage data. Effective management and storage of data are fundamental requirements for successful scientific research. Future oceanographic research depends on the availability and clarity of existing data. A coherent strategy that enables the integration of marine data streams across disciplines, institutions, time scales, and geographic regions is central to the success of OOI.
The DMP addresses the management aspects of data and products. It also presents important technical aspects of the data/data products. The DMP is the pinnacle in a series of documents that addresses OOI data and product management. The DMP does not specify the implementation details for data/data product generation and management but rather provides the guidance upon which implementation is based.

3.9 Quality Assurance and Quality Control

OOI Quality Assurance is documented in the OOI Quality Assurance and Quality Control Plan. The responsibility and guidance for the overall quality assurance of the OOI is coordinated through the QA Manager for Ocean Observing Activities at OL reporting directly to the OOI Senior Project Manager. Each of the IOs has submitted its own QA Plan and will implement quality assurance and quality control for hardware, software and telecommunications systems that comprise the OOI. The Project Management Office COTRs coordinate with the OOI QA Manager to oversee QA activities within the IO facilities and their subcontractor organizations where the OOI hardware and software components, systems and subsystems will be received, built, inspected, integrated, tested and accepted before deployment. The OOI Quality Assurance Manager or the COTRs may choose to audit selected major suppliers.

The OL Quality Plan specifies the OL QA organization, its goals and objectives and procedures for key aspects of the OOI Quality Program including QA during system design, construction, testing and for recording inspections and tests, customer satisfaction processes and for QA audits. Detailed procedures include the following:

- Quality management system implementation
- Documentation
- Management commitment
- Customer focus
- Responsibility and authority
- Management review
- Engineering Documentation Control
- Engineering Change Order Approval
- Design and Assembly Documentation Requirements
- Manufacturing Practices Specifications
- Material Tracking Procedures
- Testing and Acceptance Requirements
- Software Revision Control and Documentation Procedures
- Identification and traceability
- Inspection at subcontractor facilities
- Purchasing processes
- Verification of purchased products
- Control of non-conforming product
- Data analysis
- Continual improvement
- Corrective action
- Acceptance
- Commissioning

The OOI Quality Assurance Manager assists with and performs Quality Management functions on the OOI project. The Quality Assurance Manager provides guidance to the COTRs, schedules and conducts quality audits of IO and subcontractor facilities, assists with evaluation of the IO Quality Plans and procedures and provides quality performance metrics to OL staff on a routine basis.
3.10 Risk and Opportunity Management

A formal risk and opportunity management process has been implemented for the OOI. This process is described in the OOI Risk and Opportunity Management Plan, which is incorporated into this PEP by reference. The ROMP follows an accepted standard risk and opportunity management approach of planning, identifying potential risks and opportunities, assessment, analysis and developing mitigation, enhancement strategies or other handling techniques. Risk and opportunity management is also imbedded in the Cost Estimating Plan (CEP) and Systems Engineering Management Plan (SEMP) and integrated in engineering design process. The OOI risk and opportunity management plan provides substance for and formalizes the Risk and Opportunity Management Process, in the International Council on Systems Engineering (INCOSE) Systems Engineering Handbook, Version 3.0, June 2006, which in turn formalizes an adoption of the ISO/IEC/IEEE 16085 Risk Management standard.

Risk is an undesirable situation or circumstance, generally associated with uncertainties, that has both a likelihood of occurring and a potential detrimental consequence to the project. On the other hand, opportunities are desirable situations or circumstances, also with a likelihood of occurring and a potential benefit to the project. Risk and opportunity management is an organized process to effectively reduce such risks and/or enhance opportunities to achieve project goals. The risk and opportunity management process includes planning, identification, assessment, analysis, and handling of potential risks and opportunities, implementation of risk or opportunity handling options, and a monitoring effort to track the effectiveness of the risk and opportunity management process. The goal of risk and opportunity management is to define methods or identify alternatives that mitigate or minimize risks to an acceptable level and enhance the possibility of taking advantage of opportunities.

Risk and opportunity management consists of five separate, but interrelated activities:

- Planning
- Identification
- Assessment
- Analysis
- Handling

In one sense, everyone involved in the OOI project contributes to risk and opportunity management; i.e., all project participants are responsible for exposing risk items within their purview so that the negative impact of such risks can be minimized and positive impacts can be captured, but the organization that deals with risk on a regular basis are the Risk and Opportunity Management Boards (ROMBs) and a group of Risk Facilitators.

There is a ROMB at the System level and a ROMB for each of the Implementing Organizations (IOs) on the OOI project. The ROMBs are led by the Senior Project Manager for the base organization, as the Chair of the ROMB, but a Risk Facilitator coordinates all activities. Mandatory and adjunct members of the ROMBs may voice their opinions and provide advice, but the Chair is responsible for any and all final decisions. The Risk Facilitators serve as the secretaries of the ROMBs with responsibility for hands-on maintenance of the Risk Register (database), generating the necessary reports to support ROMB meetings, tracking the current status of each risk item, and tracking the status of risk handling activities against specific risk items.

The OOI (System) level ROMB is attended by each of the IO Risk Facilitators when any risks for which the IOs need PMO direction, support or contingency funding need to be presented to the top level ROMB. Required membership on each of the ROMBs includes the Senior Project Manager, Risk Facilitator, Chief or Senior Systems Engineer, other IPT Leads and Technical Leads as applicable and a Financial Analyst within OL and each IO. Also, there will be occasions when additional technical experts and members of the PMO or IO technical staff may be asked to attend ROMB meetings, or become ad-hoc members, to effectively evaluate or address risk issues.
There are four risk/opportunity handling techniques, or options as part of the standard process described in the OOI Risk and Opportunity Management Plan. Risk control or mitigation actively manages the risk in a manner that reduces the likelihood of its occurrence and/or minimizes the risk’s effect on the project; or for an opportunity, control or enhancement actively manages efforts to increase its likelihood of realization or enhance its effect on the project. Risk avoidance eliminates the sources of high risk and replaces them with lower-risk solutions. Risk/opportunity transfer is the reallocation of risk/opportunity from one part of the system to another or the reallocation of risks/opportunities between the NSF, OL, IOs or subcontractors. Risk/opportunity assumption or as-is acceptance is the acknowledgment of the existence of a particular risk/opportunity situation and a conscious decision to accept the associated level of risk/opportunity without engaging in any additional control efforts.

3.11 Environmental Health and Safety

Environmental Health and Safety (EH&S) is a critical concern for the OOI. The OL approach to EH&S has been documented in a comprehensive OOI Environmental Health and Safety Plan (incorporated by reference). The EH&S Plan establishes a systematic health and safety program to provide a means to identify and eliminate or control identified health and safety risks. It also assures that the environment is considered in the design, operations and maintenance of the OOI systems and subsystems. The Plan encourages the health and safety of personnel throughout activities associated with the design, development and operation of the OOI.

In turn, each IO has submitted its own EH&S Plan which complements the OOI EH&S Plan. These comprehensive, institutional based EH&S Plans focus on duties and responsibilities of personnel, specific safety procedures and reporting procedures in the event of an accident or incident. The IO EH&S Plans have placed particular emphasis on ship-board safety and on routine safety training of personnel working the OOI. Rapid reporting of safety accidents/incidents and correction of the cause of the accident/incident is also a priority.

The OOI Program Office and each IO complies with all applicable Federal, state, institutional and University-National Oceanographic Laboratory System (UNOLS) environmental, health and safety (EH&S) policies, procedures and requirements. Each IO is implementing EH&S procedures for personnel involved in the deployment, operation and routine maintenance of the observatory. All personnel who work on the OOI will be provided EH&S training and will be required to understand and adopt these policies, procedures and requirements.

The EH&S manager reports directly to the OOI Program Director. The EH&S manager chairs the OOI Safety Steering Committee. The EH&S manager conducts environmental, health and safety audits of OOI installations including production facilities, operations centers, shore stations, and shore facilities.

3.12 Permits and Environmental Compliance

3.12.1 Environmental Compliance

The National Environmental Policy Act (NEPA) of 1969 (42 United States Code [USC] §4332) requires that Federal agencies consider the potential impacts of major Federal actions on the human and natural environment. NSF, as the lead agency, has funded Ocean Leadership to develop environmental assessments at the initial programmatic stage, and then at the final design or site-specific stage, to address the installation and operation of the OOI Network to meet NSF’s legal responsibilities for compliance with NEPA, the Council of Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] §§ 1500-1508), and NSF regulations for implementing NEPA found in 45 Code of Federal Regulations (CFR) Part 640.
In advance of Final Design Review, the potential impacts on the human and natural environment associated with the proposed installation and operation of the OOI were assessed in the Final Programmatic Environmental Assessment for the National Science Foundation-Funded Ocean Observatories Initiative (NSF, 2008a) which was issued in June 2008 after a 30-day public comment period. The Final Programmatic Environmental Assessment (PEA) concluded with a Finding of No Significant Impact (FONSI) on February 4, 2009 (NSF, 2009a). Shortly after Final Design Review, NSF proposed modifications to the OOI design; the potential impacts of those modifications were assessed in a Supplemental Environmental Report (SER) for the Ocean Observatories Initiative (NSF 2009b) issued April 2009.

With construction start, the OOI moved from the programmatic analysis to the site-specific analysis stage. The purpose of the Site-specific Environmental Assessment (SSEA) is to update information previously described in the PEA and SER with more detailed descriptions of the proposed infrastructure, noting any changes to the location of the infrastructure and the technology to be deployed, as well as addressing any new findings regarding potential impacts. This document tiers off from the previously prepared PEA, associated FONSI, and SER. It focuses only on those activities and the associated potential impacts, including cumulative impacts, resulting from the site-specific installation and operation and maintenance (O&M) of OOI assets not previously assessed in the PEA and SER.

The Final Site-Specific Environmental Assessment for the National Science Foundation-Funded Ocean Observatories Initiative (NSF, 2011) was issued on January 31, 2011, after a 45-day comment period and concluded with a Finding of No Significant Impact/Decision Document issued on January 31, 2011 (NSF, 2011). These documents can be accessed via the NSF Environmental Compliance page on the OOI web site (http://www.oceanobservatories.org/about/environmental-compliance/), which provides links to the NSF Ocean Sciences Division Environmental Compliance webpage.

The NSF initiated a process during the preparation of the Final SSEA and continued after issuance of the Final SSEA whereby marine stakeholders and the public, in particular the fishing community, could provide input to the site selection process, or micro-siting, for final mooring placement of the Pioneer Array and the uncabled mooring sites of the Endurance Array. Upon completion of site determinations, final siting proposals, including a supplemental environmental report, for the Pioneer Array and selected Endurance Array mooring sites were submitted to NSF for approval. The NSF issued the Supplemental Environmental Report for Modifications in the Design, Infrastructure, and Installation of the Pioneer Array, Endurance Array, and Regional-Scale Nodes of the OOI (2013 SER; NSF, 2013) to assess final siting and design modifications.

The OOI Environmental Compliance and Permit Plan (DCN 1001-00001) describes the project’s approach to and management of the requirements for complying with the NEPA and securing the necessary permits and authorizations to implement and operate the OOI network. The plan addresses both the NEPA environmental compliance process and the permit process for installation and operation of the OOI infrastructure. The plan defines roles and responsibilities of Ocean Leadership, the marine IOs, their environmental consultants, and the NSF in environmental compliance and for securing the necessary permits and authorizations to install and operate OOI infrastructure.

3.12.2 Permitting Responsibility

Various permits, certifications, and authorizations are required by federal, state, and local agencies with jurisdiction in the high seas or coastal waters where the OOI infrastructure will be installed. The IOs are responsible for securing the required permits, licenses, or authorizations for installation and operation of the OOI Network on behalf of Ocean Leadership (as the designated owner/operator). All applications for permits, licenses, or authorization will be reviewed by Ocean Leadership before submission to regulatory agencies. The IOs are also responsible for permits or authorizations for temporary test deployments or survey work; Ocean Leadership will provide review and oversight for test permits. The designations for the named applicant and authorized agent on permit applications are defined in the OOI Environmental Compliance and Permit Plan.
The list of necessary permits, licenses, authorizations, and other environmental compliance notifications, by installation site, is found in the OOI Permit List (incorporated by reference). This list is updated regularly.

3.13 Testing and Evaluation

OOI shall conduct testing and product evaluation activities throughout the design, development, integration, deployment, and operations phases of the OOI life cycle. Testing and product evaluation takes place against both developmental/prototype and production articles at all levels of integration, and serves to verify and validate all OOI system of systems, system, and subsystem requirements.

Maximum use of OOI Configuration Management tools and OOI Collaboration tools will be made to monitor and record testing and evaluation results, including: corrective actions taken; lessons learned; outcomes achieved; tradeoff, effectiveness, and risk analyses completed with resulting key decisions.

A Test Plan and Test Procedures will be developed for each formal test within OOI. The systems engineers at each IO, with review and approval of the OOI Chief Systems Engineer, will be responsible for verification and validation of all science, engineering design, performance, and interface requirements. Each requirement will be verified and traced to the verification event, through the DOORS database of requirements. Test Reports will be created to document and analyze test results.

Detailed explanations of the OOI testing and product evaluation processes may be found in the OOI Test and Evaluation Strategy. The general approach to testing and evaluation is that the IOs will perform testing on developmental and production articles in an iterative and incremental fashion through all levels of product integration up to and including the hardware platform or software release. Hardware platforms and software releases will then be deployed and turned over to the PMO for Validation Testing. PMO Validation testing will include validation of end user requirements through execution of use case scenarios. Additional PMO evaluation activities take place as part of the commissioning process associated with specific deployments.

3.14 Annual Work Plans

Ocean Leadership prepares two types of annual work plans for its activities associated with the OOI. The first addresses the MREFC activities scheduled during the next project year and the second addresses the plan for operations and maintenance (O&M) activities that are scheduled in the next project year.

Ocean Leadership and the IOs prepare the construction annual work plan to provide a clear accounting of the part of the OOI MREFC project that is being executed during the particular project year. This will be based upon the work to be accomplished that is documented in the resource-loaded schedule that is maintained in Project Server. The annual plan will also track the progress of the project as it progresses through the five and a half year construction.

Ocean Leadership and the IOs also plan the use of initial operations of the OOI as component parts of the system are accepted and begin initial operations during the five and a half year construction period. This annual plan shows what the NSF Research and Related Activities (R&RA) funding provides for, in terms of operating the control centers, establishing the maintenance processes, providing a initial planning and technical support to the user community, and establishing the rotating pool of spares and repair parts necessary to maintain the OOI system.
3.15 Document Control and Reporting

The Configuration Manager is responsible for tracking and maintenance of the document list (accession list) with version numbers and dates. Authors of preliminary documents are responsible for updating the date on the document list and document within a day of the change and must provide an electronic file and .PDF file for the electronic repository upon issuance. Before release, the controls on preliminary documents are minimal and intended to facilitate the review of early drafts and numerous changes in a short period of time.

The Alfresco Document Management software is the basis for the OOI Document Management System (DMS) portion of the Collaboration Tools. Document Management software enables a unified, extendable digital solution of how documents are created, stored, filed, retrieved, secured, recovered, retained, archived, distributed and authenticated; all of which span near-unlimited locations (only limited by connectivity).

The central repository aspect of the OOI DMS efficiently stores libraries of documentation, as well as past revisions and versions. This central repository not only allows for disparate groups and individuals to gain access to the proper documentation, but also provides a single source of access to all of the documentation they require. It also enables various policies that documents within the repository are subject to, including but not limited to organizational security, disaster recovery, retention, and archive policies.

Version controls within the Document Management software give strong support to the change process within the project. This allows for previous version of documents to be archived, thus not only preserving previous versions, but also enables better program oversight as documentation can be monitored within iterative states.

Document Management software also enables a true sense of workflow associated with each critical document within a project and/or organization, thereby allowing documents to be controlled in a fashion where creation, editing, and deletion is tracked, monitored and managed. Workflow is defined more narrowly as the automated movement of documents or items through a sequence of actions or tasks that are related to a business process. Workflows are used to consistently manage common business processes within an organization by enabling the organization to attach business logic to documents or items in a DMS or library. Business logic is essentially a set of instructions that specifies and controls the actions that happen to a document or item.

Alfresco uses roles to determine what a user can and cannot do in a space. These roles are associated with permissions, which as a general rule are as follows: Users have all rights in their own space, while Administrators have all rights in all spaces. Only those with the proper authority to create, edit, or delete content and information are able to do so.

Ocean Leadership submits monthly reports to NSF on the OOI project based on the reporting requirements set forth in the Cooperative Agreement and Cooperative Support Agreements. The reports include a section that analyzes the cost and schedule variances from the EVMS. Annual reports are produced in phase with the project year.

3.16 Contingency Management

The contingency budget is determined as part of a bottom-up cost estimate and a programmatic top down risk evaluation. These two segments combine to provide the value of the contingency pool appropriate to the project. Actual contingency funding is held by Ocean Leadership and allocated to best support total project priorities. The formal change control process is used to allocate contingency to specific change requests and their related scope and activities.

OOI will conduct detailed planning as a rolling wave activity associated with each annual funding increment. This enables the project to adjust to actual funding levels, prior year accomplishments and lessons learned, realized risk, and the availability of more mature/definitive pricing than was previously available during the initial cost estimation process. Any resulting deviations from the
baseline budget as a result of this detailed planning will be evaluated and processed via the established change control process.

OOI development relies heavily on existing technologies and modified off-the-shelf products. The one notable exception is software development, where interfaces are numerous, operational possibilities are complex, and development effort is notoriously difficult to predict. These risks are partially mitigated by the spiral software development process planned for OOI, which supports rapid development and operational exposure for incremental functionality with subsequent fault elimination and software maturation. These risks are further mitigated by budgeting for an additional six months of schedule float for the Cyberinfrastructure development. The associated cost is included in the proposed budget and considered in determining the OOI period of performance, but it is also recognized and captured as a component of total project contingency. Additionally, the OOI project is vulnerable to rapidly escalating commodity prices, particularly the price of copper in the network cables. It is assumed these prices may increase each year and that some contingency funding may be required to mitigate this risk prior to execution of each option year.

Deployment costs are dominated by labor and ship time. Labor increases should fall within planned escalation, but the cost of ship time is heavily dependent on fuel prices, overall ship usage and assigned ports, and exchange rates. Alternate port assignments are the largest unknown factor within the work package and can change the cost of an installation or maintenance cruise by 50% or more. An additional 4.2% (8% total) of inflation escalation for ship operations each year has been assigned to mitigate fluctuating fuel prices. Furthermore, the deployment window each year is limited and highly susceptible to adverse weather conditions. It is extremely unlikely that weather will permit the achievement of annual deployment objectives for every planned deployment season. An additional half-deployment season has been scheduled at the end of the project to mitigate likely weather impacts. Again, the associated cost is included in the proposed budget and considered in determining the OOI period of performance, but it is also recognized and captured as a component of total project contingency.

The total contingency budget, including risk model assignments and the special case considerations described above, and products of the budget and Risk Register is approximately 30% of the Total Project Cost. The program office will manage contingency to retain a contingency budget of 25-30% of the Estimate to Complete throughout the construction project.
3.17 IO Selection, Performance Management, and Acquisition Planning

3.17.1 Selection of IOs: Marine Infrastructures, Cyberinfrastructure, and Education and Public Engagement Infrastructures

Ocean Leadership utilized a formal source selection process similar to the federal process followed for competitive, high-level awards. Each IO procurement started with a Notice of Intent, which provided information to potential bidders about the scope of work and estimated date for solicitation release; interested parties were requested to reply with a non-binding letter of intent to bid. Formal solicitations were then released, allowing an average of 120 calendar days to prepare proposals. An amendment to the solicitation provided answers to all potential bidders on all questions that were received. The solicitation detailed clearly the basis for source selection (i.e., greatest value assessment) and delineated the information required for this assessment. Proposals, which were in two volumes, Technical and Cost/Past Performance, were rated by two different panels. These panels had outside representatives from the science community as well as industry experts. Chairs of each panel briefed the source selection committee who in turn made the selection recommendation to the source selection official. Prior to entering into final negotiations, a complete package of the solicitation, scoring, and best value analysis was provided to NSF for concurrence. In some cases oral presentations preceded negotiations. Resulting subawards incorporate all the NSF flowdown provisions, and the award documents were provided to NSF.

3.17.2 Management of IO Subaward Performance

Each subaward contains a “Reporting Requirements” clause which lists all deliverables, the due date for each deliverable and a reference to the task/sub-task area of the Statement of Work. Ocean Leadership COTRs are identified in the subaward along with clear parameters as to when their technical direction is valid within the scope of the contract. COTRs provide a general technical liaison with the IO and monitor the timeliness of deliverables.

Monthly invoices are reviewed to assess costs incurred in relationship to subaward milestones. The subawards provide Ocean Leadership with the right to withhold additional funding if contract deliverables are deficient in quality and/or untimely. Each subaward requires the IO to notify Ocean Leadership in writing when 75% of the incremental funding has been expended and provide an estimate of additional funding needed to continue performance for the next 120 calendar days. COTRs review variance between planned value and earned value with IOs at a work package level as part of the implementation of Earned Value Management.

IOs are required to meet regularly with suppliers and vendors to review status, issues, action items, payment forecasts, and schedules. The results of these reviews are discussed at weekly conference calls with the COTR.
3.17.3 Acquisition Planning for New Subawards

Solicitations for new hardware and software are conducted in accordance with each IO’s approved purchasing policies/procedures. These purchasing procedures have been reviewed by independent auditors as well as by each IO’s cognizant federal agency. (For WHOI it is Defense Contract Audit Agency/Office of Naval Research; for UCSD it is U.S. Department of Health and Human Services; for UW it is U.S. Department of Health and Human Services; for Rutgers it is U.S. Department of Education). Review and approval of new awards shall adhere to the NSF cooperative agreement flowdown clause entitled “Subaward Requirements,” which authorizes Ocean Leadership and each IO to enter into proposed contractual arrangements and to fund such arrangements up to the amount indicated in their respective budgets. Ocean Leadership is required to obtain NSF approval prior to awarding any new subaward or subcontract that exceeds $250,000 award value. This clause is incorporated into the IO subawards; therefore NSF and Ocean Leadership reviews for approval new IO subawards above $250,000 before the IOs are authorized to sign them. The NSF has provided Ocean Leadership advance authorization for prime and partner subawards as identified in the Cooperative Agreement (CA), and those listed in the CA are exempt from the threshold above.

To provide NSF with insight into all planned awards greater than $250,000 in each project year, Ocean Leadership and the IOs have developed an Advanced Acquisition Plan for OOI Acquisitions, which is included in the OOI Annual Work Plan. The worksheet identifies anticipated new high-value awards or acquisitions across the program. The Advanced Acquisition Plan specifies whether the anticipated acquisitions are sole-source versus competitive, the purpose, the quantity procured, the estimated award value, the award lead-times, the anticipated contract type and other information required by the Cooperative Agreement. With other coordination measures, this planning process assists the OOI Program Office in integrating acquisitions across the IOs when technically appropriate.

3.18 Property Management

The OOI Property Management Plan (PMP) establishes an effective property control system for use by the OL in the management of the OOI hardware, software, and associated OOI equipment purchased with OOI funding under the cooperative agreement, including subawards and subcontracts. The PMP is implemented by OL under the direction of the OL Director of Contracts and Grants. It is used to audit IOs in the management of their property systems. Each IO has property plans and procedures for receiving and controlling property purchased with OOI funding. It is essential to promptly report incidents of loss, damage, or destruction of the OOI property. It is also essential to perform internal property self audits, and to initiate corrective actions when deficiencies are disclosed.

The IOs maintain formal written policies, plans and procedures that provide an effective property control system for each OOI asset for which they are responsible in accordance with the terms and conditions of their contracts. These plans and procedures will be provided to the OL Director of Contracts and Grants, to the OL Contracting Officer’s Technical Representatives (COTR), and to the OL Property Administrator responsible for the custody of OOI equipment. If an incident of loss, damage or destruction (LDD) occurs, the OL Director of Contracts and Grants and the Ocean Leadership Property Administrator is promptly notified. Property self-audits by the IOs will be performed at least annually and corrective actions will be taken in the event of any deficiencies. Property audits by the OL Property Administrator will be performed on an annual basis.

Each of the IOs and their subcontractors/subawardees will maintain an effective system to control and manage OOI equipment. The system will consist of procedures that define processes for the acquisition, receipt, identification, record keeping, movement, storage, physical inventory, reporting, utilization, subcontractor/subawardee control, disposition, loss and contract close-out of OOI-owned hardware, software, and other equipment in accordance with the Code of Federal Regulations (2 CFR 215), the NSF Financial and Administrative Terms and Conditions (FATC), NSF Award and Administration Guidelines and other applicable NSF regulations. Each IOs will ensure that its OOI property management system is in place from the time of equipment (or
property) receipt to the time of return, deployment, or disposition of the property. Accountability will be compatible with Ocean Leadership contracts and with 2 CFR, 215.33(a)(1) and other NSF regulations/requirements.

Electronic transfers of information will be provided by the IOs on a monthly basis from the IO records systems and the combined project data and information will be made available. The system will provide analysis and reporting capability to the project during execution and also serve as the initial data store maintenance information pending the development of the OOI Cyberinfrastructure.

4 Security

Security is integral to the OOI on several levels. First, the OOI must be concerned about the physical security of the observatory hardware both at sea and in the development laboratories. Second, it must be concerned about the security of the data that is collected from the observatories. Finally, it must be concerned about the operational security of the integrated system.

4.1 Physical Security

Ensuring the physical security of the OOI is primarily the responsibility of the IOs. On-shore facilities are locked and protected from illegal entry and access. The nature of the facility may warrant significant measures like security systems or guards. Each IO plans and implements appropriate security throughout the design, implementation, installation, and operational phases of the OOI.

Physical security of the marine observatories is the responsibility of the respective IO. Each IO considers physical security in the design phase and implement solutions that reduces or eliminates risk through the choice of buoy design, landing sites, burial methods, and route selection. In addition, the IOs may recommend that the OOI participate in community preventative measures by publishing route position lists and communicating with fishermen and mariners.

4.2 Cyberinfrastructure Security

The OOI Cybersecurity Plan describes the specific measures to be undertaken by the OOI to ensure the system remains operational, there is no interruption in data access, and the data is accurate within established quality assurance/quality control parameters. The OOI data policy envisions that all basic OOI data streams will be open and freely available to any potential user; however, some access privileges will vary by user class. The CI IO will have responsibility for implementing the data policy. It is expected that all users (of data) and instrument PIs will be required to register for usage of OOI facilities and data and they will be required to fulfill the obligations of the OOI data policy. The implementation of these processes is the responsibility of the CI IO.

Per the Cybersecurity Plan, the CI IO will also have responsibility to ensure that the OOI data and programs are not susceptible to cyber attacks in the form of viruses, malware, and denial of service attacks, and to ensure that the data cannot be corrupted by outside influences. A formal tracking system that documents the cause and resolution of each attack or intrusion will be implemented. The system will utilize two virtual and physical network and service environments: one for the CI data interactions (Public WLAN) with the users via the public Internet/Internet2 and the other for the CI interactions with instruments (Service and Marine VLAN) via the OOI network infrastructure as exemplified by the conceptual system view within the FND. Similarly, Virtual Local Area Networks will be utilized to separate out varied functionalities within the physical infrastructure.
The CI IO is also responsible for implementing data and system back-up designs for service interruptions or disasters. There will be a full off-site backup for all OOI-related data and software. The CI IO will enforce the procedures and policies that are defined in the Cybersecurity Plan.

4.3 Operational Security

Security for the OOI during its operational phase takes several forms: national security, individual PI data security, data validity, protection of operational systems during software upgrades or turn-up of new observatory elements, and installation of new instruments on existing infrastructure.

Acquisition and public distribution of acoustic and other geophysical data in some regions along the U.S. coastlines poses a significant national security risk. Deploying sensitive arrays in some areas will lead to the need to restrict data access, prevent data acquisition at random intervals, or restrict publication of results. Ocean Leadership and NSF continue to hold discussions with the U.S. Navy about this issue. A U.S. Navy/OOI Cybersecurity Subcommittee has been established to develop the requirements, design, and operating procedures associated with the technical solution providing this restricted data access. The OOI will conform to any additional conditions levied by these groups.

Individual PIs who have developed a data source that becomes part of the OOI network will be required to make data publicly available in accordance with the OOI data policy.

Data users also want to be sure that the data that the OOI is providing is accurate. The OOI Network data policy requires data providers to provide information regarding the provenance, description, quality, maturity level, and collection context of their data. This additional information that is associated with the data will help the users understand the quality level of the data.

An important feature of the OOI is the capability for scientists to install detection protocols on the OOI data streams for the identification of significant events. Such identification may lead to multiple requests (proposals) to alter a subset of the OOI sampling rates. These requests will go through NSF approval processes that incorporate established marine operator policies for safe, technically feasible operations.

The OOI may have a number of experiments running on the system simultaneously. During system upgrades and maintenance, it may be necessary to remove power on the system for a brief period. The OOI Network Operations center will develop procedures and tests to ensure that this can be done without harming any instruments on the observatory. Similarly, upgrades of the observatory software will be coordinated through the OOI Network Operations center and will be tested to ensure backward compatibility.

Finally, the inclusion of any new instruments for use on the OOI infrastructure will be subject to NSF proposal review and approval processes. OOI, as part of operational security, will confirm that any instruments planned to be placed on the OOI have been approved by the necessary entity(s).

5 Operations and Maintenance

5.1 Operations and Maintenance Planning

During the 5 ½ year Construction phase, components of the OOI will incrementally undergo acceptance and commissioning activities and transition to O&M. After the OOI infrastructure is fully implemented, the OOI will enter the steady-state phase of operation, which is planned to continue for twenty-five years.

The O&M of the OOI will support the two principal scientific and research mandates that are the basis for its Construction: the sustained near-real time capture and delivery of data and expandability of the infrastructure to support new capabilities. The OOI objective is to fulfill these
two mandates with the most cost-effective approach for operations and maintenance across the observatory infrastructure. These objectives are to maximize availability of data from all components of the OOI, adapt O&M approaches as the OOI infrastructure evolves in response to scientific or budgetary requirements, govern and execute operations that ensure inclusion of the broader user community, modify operational or maintenance processes based on the operational state of the network, minimize O&M costs, and maximize efficiency and performance.

Operation planning is built upon the efficient and cost-effective use of the resources, processes, and technology to provide reliable user service. The OOI concept of operations focuses on consistent and repeatable operations in the management and performance of day-to-day operations and maintenance. This includes managing at-sea and shore-based operations, data management, data quality assurance, monitoring system health and status, and ensuring the user community receives uninterrupted access to data products, all within a safe working environment.

As data arrives from the instruments, it is the responsibility of the O&M team (personnel from the PMO and IOs working O&M activities) to capture the information at the CyberPoP Acquisition Points, ensure its integrity, store the information at the CyberPoP Distribution Points, and provide it to the OOI community on a 7x24 basis through the Distribution CyberPoPs. There will be a central location that monitors and records the status of the components of the integrated network and where OOI operators respond to questions/problems. Information from the marine IOs support applications are fed to the cyberinfrastructure so that the status of any device in the network can be quickly ascertained. Support to end users is provided by a centralized Help Desk.

Maintenance planning activities are initially supported by accomplishing a decision analysis to determine the sparing requirements, refurbishment, and calibration approaches for equipment. The decision analysis will take into consideration the repair level (what), frequency (when), and IO/OEM (who) that can be accomplished effectively. For the OOI program, the analysis will originate with the Technical Data Package (TDP) provided by Construction and technical documentation, as available, for commercial off-the-shelf equipment and considers the design attributes of the equipment, components and parts (e.g., cost, physical, diagnostic and maintainability) to determine an optimized repair level.

Until the end of the construction phase, it is envisioned that there will be a gradual transition of staff (when appropriate) from their MREFC (construction) functions to the O&M program, as well as establishment of a more focused effort toward cross-program collaboration activities to achieve operational efficiencies.

As an integral part of this gradual transition, the O&M program will implement cost effective management approaches to align strategies that will transform the existing O&M model to a new and restructured steady state model. Adoption of effective strategies coupled with implementation of incremental activities will ensure that the objective of operating the OOI efficiently with a lean management layer and at a sustainable cost can be accomplished.

As the roadmap to the O&M steady state model is established, specific initiatives will be undertaken to identify key areas and alternate approaches to lower observatory operations costs without compromising the program’s scientific objectives.

5.2 Science Planning

The OOI Science Plan and related OOI research planning documents describe in detail the science themes leading to the OOI Network Design. The science themes informing the OOI network design will be rich areas of active oceanographic investigation for decades to come. Conducting the eventual science activities carried out with the OOI integrated observatory network will require a collaboration among the NSF’s Ocean Sciences Division, Ocean Leadership’s OOI Program Office, the project scientists associated with the IOs, and the OOI advisory structure.
There will be several modes in which potential investigators will use the completed OOI facility. Considering all possible use case scenarios, at one extreme are researchers who will use only data or data products from the core instruments (e.g., for incorporation into models). In this case, the planning or technical support needed from the OOI operational entity will be mainly informational (e.g., instrument calibration, description of the mode of deployment, etc.). At the other extreme are researchers who propose to deploy instrumentation or experiments on the OOI physical infrastructure. These users will require more intensive planning and technical support, such as feasibility assessments, requirements for power and data rate bandwidth, installation schedule, risk and risk mitigation, etc. Somewhere in the middle are researchers who propose to manipulate OOI observing assets and sampling protocols or conduct field campaigns centered at, or in the vicinity of, OOI infrastructure.

The NSF and the project team have drafted a description of the process for proposal and experiment planning and associated technical support required by different categories of users. Proposals submitted to NSF for research funding involving OOI data and/or requesting direct interaction with the infrastructure will follow a process involving varying levels of requirements and review. The process will be based on four principal proposal attributes, one or more of which may be true for a given proposal: 1) analysis using data from OOI core instruments, 2) alteration of the OOI core instrument baseline measurement protocol, 3) participation in OOI seagoing operations, and 4) addition of instrumentation to the OOI infrastructure. All proposals submitted to NSF will be subject to NSF’s standard merit review process. Investigators who request alterations in core instrument sampling protocol and/or propose to add instrumentation to the OOI Network will need to submit planning letters for assessment of technical feasibility in advance of submission to the funding agency. Potential investigators will be provided guidance and information regarding feasibility assessments, facility usage, budgeting, technical and cyberinfrastructure requirements, education and public engagement, and security requirements. Assistance in proposal planning and scheduling will be provided through involvement of the OOI personnel, the NSF, the University-National Oceanographic Laboratory System (UNOLS), and the U.S. Navy. When the process has been sufficiently elaborated and approved by the NSF, information about the OOI proposal process will be available on the OOI website. A conceptual description of the proposal process has been discussed at OOI Community Workshops that will continue to be held throughout the construction phase. The Program Advisory Committee will take an active role in the science planning discussions and help identify the path to develop optimal user support models.

Initial science planning activities will involve interaction with the prospective OOI user community through a variety of meetings and workshops. The Program Management Office convened two regional community meetings during Project Year 1 to introduce the OOI Network, i.e., its observation capabilities, sensors and instrumentation, concept of operations and investigator access to the network, data, and information. These introductory meetings will continue throughout the early construction phase with agendas that will then expand to include science planning as the infrastructure advances towards operational readiness. Because future funding for individual researchers to use the OOI platform may come from a range of agencies (e.g., NSF, NOAA, ONR, DOE), it is essential that these meetings have active participation by agency program directors.

Workshops and community meetings are planned throughout the MREFC project period of performance. Specific plans for these workshops will be developed with advice from the Program Advisory Committee and NSF/OCE. Workshops and smaller, targeted focus groups will be convened to provide external scientific and engineering advice to the OOI project. Small focus groups will be used to inform the observation sampling strategies; larger workshop groups will provide advice on calibration and quality control protocols. These events may also include targeted workshops that focus on identifying new research avenues, computational, modeling or visualization tools for analysis of the OOI data streams, or development of new sensors/instruments. These workshops and meetings could also serve within NSF funding guidelines, to form topical working groups of investigators to plan specific experiments in focused areas of the science themes.
6 Reviews

Multiple review mechanisms are in place during construction of the OOI facility to ensure effective management, performance, and compliance with requirements. The sponsoring agency, NSF, conducts reviews in accordance with the MREFC process. As with other large facility programs, NSF organizes program reviews with external panels to address management performance and progress against any changes to the capability, cost, and schedule baselines. Additionally, NSF will establish an external scientific oversight committee to assess program progress against science goals periodically, evaluate the impact of proposed changes in infrastructure on the achievement of program goals, and recommend change in direction and reallocation of resources as appropriate. This committee will comprise informed but non-conflicted members of the ocean science, engineering, and education communities and thereby will also encourage continued support of the program by the oceanographic community.

Engineering reviews (formal and informal) are conducted at key junctures. For larger complex configuration items, this may be a progressive or incremental review, culminating in system-level reviews that essentially validate the completeness of preceding configuration-item-level technical reviews and ensures adequate interfaces between all configuration items. The engineering technical reviews are discussed further in the SEMP. Technical reviews generally look to identify the review objectives and requirements cited in the respective plan, as well as considerations given to OOI policies, procedures, and agreements, as applicable. They also help determine progress toward satisfying the technical review entry requirements and help prepare the materials constituting technical review package and presentation package.

Regular, issue-specific technical and cost reviews are also conducted by the OOI Program Office on an as-needed basis using expertise from within and outside the project team. Peer review involving cross-cutting teams from all IOs is used as a routine measure to vet proposed technical solutions and is one method to achieve standardization of solutions across the facility. The program’s science advisory structure and wider user community provides a pool of domain experts who can be brought in as issue-specific reviewers on a flexible basis. Finally, the change control process allows for an element of technical review as proposed changes are considered among and across implementing organizations.

OOI has successfully completed multiple internal and external science, technical and programmatic reviews including the NSF Conceptual Design Review (August 2006), Preliminary Design Review (December 2007), and Final Design Review (November 2008). In addition, OL has conducted individual IO Critical Design Reviews for all major components to be deployed.

As outlined in Section 1, the Consortium for Ocean Leadership has management, coordination, and integration responsibility for the OOI through the cooperative agreement with NSF. The Board of Trustees of OL has oversight responsibility for the corporation and its performance against programmatic commitments, and can elect to provide another level of review or add external subject matter experts to the review structure outlined in this document.
Appendix A-1: Documents Incorporated by Reference

Listed in order of reference.

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Document File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOI Final Network Design</td>
<td>1101-00000_FND_OOI</td>
</tr>
<tr>
<td>OOI Integrated Master Schedule</td>
<td>1040-00000_IMS_OOI</td>
</tr>
<tr>
<td>OOI Commissioning Plan</td>
<td>1004-00000_Commissioning_Plan_OOI</td>
</tr>
<tr>
<td>OOI Configuration Management Plan</td>
<td>1000-00000_CMP_OOI</td>
</tr>
<tr>
<td>OOI Operations and Maintenance Plan</td>
<td>1010-00000_OM_Plan</td>
</tr>
<tr>
<td>OOI Earned Value Management System Plan</td>
<td>1005-00000_EVM_Plan_OOI</td>
</tr>
<tr>
<td>OOI Interface Agreements</td>
<td>1131-00000_IA_CI-RSN; 1132-00000_IA_CI-CG; 1133-00000_IA_CG-RSN;</td>
</tr>
<tr>
<td>OOI Systems Engineering Management Plan</td>
<td>1100-00000_SEMP_OOI</td>
</tr>
<tr>
<td>OOI Data Management Plan</td>
<td>1102-00000_Data_Management_Plan_OOI</td>
</tr>
<tr>
<td>OOI Quality Assurance and Quality Control Plan</td>
<td>1003-00000_QA_QC_Plan_OOI</td>
</tr>
<tr>
<td>OOI Cost Estimating Plan</td>
<td>1002-00000_CEP_OOI</td>
</tr>
<tr>
<td>OOI Environmental Health and Safety Plan</td>
<td>1006-00000_EHSP_OOI</td>
</tr>
<tr>
<td>OOI Environmental Compliance and Permit Plan</td>
<td>1001-00001_Permit_List_OOI</td>
</tr>
<tr>
<td>OOI Test and Evaluation Strategy</td>
<td>1150-00000_Test_and_Evaluation_Strategy_OOI</td>
</tr>
<tr>
<td>OOI Property Management Plan</td>
<td>1011-00000_Property_Management_Plan_OOI</td>
</tr>
<tr>
<td>OOI Cybersecurity Plan</td>
<td>1012-00000_Cybersecurity_Plan_OOI</td>
</tr>
<tr>
<td>OOI Property Management Plan</td>
<td>1011-00000_Property_Management_Plan_OOI</td>
</tr>
</tbody>
</table>
Appendix A-2: Acronym List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACWP</td>
<td>Actual Cost of Work Performed</td>
</tr>
<tr>
<td>AUV</td>
<td>Autonomous Underwater Vehicle</td>
</tr>
<tr>
<td>BCWP</td>
<td>Budgeted Cost of Work Performed</td>
</tr>
<tr>
<td>BCWS</td>
<td>Budgeted Cost of Work Scheduled</td>
</tr>
<tr>
<td>CA</td>
<td>Cooperative Agreement</td>
</tr>
<tr>
<td>CDR</td>
<td>Conceptual Design Review (pre-construction phase; August 2006)</td>
</tr>
<tr>
<td>CDR</td>
<td>Critical Design Review (construction phase, technical review process)</td>
</tr>
<tr>
<td>CEP</td>
<td>Cost Estimating Plan</td>
</tr>
<tr>
<td>CGSN</td>
<td>Coastal/Global Scale Nodes</td>
</tr>
<tr>
<td>CI</td>
<td>Cyberinfrastructure</td>
</tr>
<tr>
<td>CMP</td>
<td>Configuration Management Plan</td>
</tr>
<tr>
<td>CND</td>
<td>Conceptual Network Design</td>
</tr>
<tr>
<td>COPAS</td>
<td>Center for Oceanographic Research in the eastern South Pacific</td>
</tr>
<tr>
<td>CORE</td>
<td>Consortium for Oceanographic Research and Education</td>
</tr>
<tr>
<td>COTR</td>
<td>Contracting Officer’s Technical Representative</td>
</tr>
<tr>
<td>CSN</td>
<td>Coastal Scale Nodes</td>
</tr>
<tr>
<td>CyberPOP</td>
<td>Cyberinfrastructure Point of Presence</td>
</tr>
<tr>
<td>DFO</td>
<td>Fisheries and Oceans Canada</td>
</tr>
<tr>
<td>DMS</td>
<td>Document Management System</td>
</tr>
<tr>
<td>DOORS</td>
<td>Dynamic Object Oriented Requirements System</td>
</tr>
<tr>
<td>EH&S</td>
<td>Environmental Health & Safety</td>
</tr>
<tr>
<td>EPE</td>
<td>Education and Public Engagement</td>
</tr>
<tr>
<td>EVMS</td>
<td>Earned Value Management System</td>
</tr>
<tr>
<td>FATC</td>
<td>Financial and Administrative Terms and Conditions</td>
</tr>
<tr>
<td>FDR</td>
<td>Final Design Review</td>
</tr>
<tr>
<td>FND</td>
<td>Final Network Design</td>
</tr>
<tr>
<td>FONSI</td>
<td>Finding of No Significant Impact</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>GAAP</td>
<td>Generally Accepted Accounting Principles</td>
</tr>
<tr>
<td>GEO</td>
<td>Group on Earth Observations</td>
</tr>
<tr>
<td>GEOSS</td>
<td>Global Earth Observation System of Systems</td>
</tr>
<tr>
<td>GSN</td>
<td>Global Scale Nodes</td>
</tr>
<tr>
<td>ICD</td>
<td>Interface Control Document</td>
</tr>
<tr>
<td>ifdr</td>
<td>Internal Final Design Review</td>
</tr>
<tr>
<td>IMS</td>
<td>Integrated Master Schedule</td>
</tr>
<tr>
<td>INCOSE</td>
<td>International Council on Systems Engineering</td>
</tr>
<tr>
<td>IO</td>
<td>Implementing Organization</td>
</tr>
<tr>
<td>IOOS</td>
<td>Integrated Ocean Observing System</td>
</tr>
<tr>
<td>IOS</td>
<td>Institute of Ocean Sciences</td>
</tr>
<tr>
<td>IPT</td>
<td>Integrated Product Team</td>
</tr>
<tr>
<td>IRA</td>
<td>Interface Requirements Agreement</td>
</tr>
<tr>
<td>IRS</td>
<td>Interface Requirements Specifications</td>
</tr>
<tr>
<td>JOI</td>
<td>Joint Oceanographic Institutions</td>
</tr>
<tr>
<td>MARS</td>
<td>Monterey Accelerated Research System</td>
</tr>
<tr>
<td>MBARI</td>
<td>Monterey Bay Aquarium Research Institute</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>MREFC</td>
<td>Major Research Equipment and Facilities Construction</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NEON</td>
<td>National Ecological Observatory Network</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
</tbody>
</table>
Project Execution Plan

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEPTUNE</td>
<td>NorthEast Pacific Time-series Undersea Networkecl Experiments</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanographic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NSB</td>
<td>National Science Board</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>OAT</td>
<td>Observatory Advisory Team</td>
</tr>
<tr>
<td>OBS</td>
<td>Organizational Breakdown Structure</td>
</tr>
<tr>
<td>OFEG</td>
<td>Observing Facilities Exchange Group</td>
</tr>
<tr>
<td>OL</td>
<td>(Consortium for) Ocean Leadership</td>
</tr>
<tr>
<td>O&M</td>
<td>Operations and Maintenance</td>
</tr>
<tr>
<td>OMM</td>
<td>Operations and Maintenance Manager</td>
</tr>
<tr>
<td>OOI</td>
<td>Ocean Observatories Initiative</td>
</tr>
<tr>
<td>OOT</td>
<td>Observatory Operations Team</td>
</tr>
<tr>
<td>OSC</td>
<td>Observatory Steering Committee</td>
</tr>
<tr>
<td>OSNAP</td>
<td>Overturning in the Subpolar North Atlantic Program</td>
</tr>
<tr>
<td>OSU</td>
<td>Oregon State University</td>
</tr>
<tr>
<td>PAC</td>
<td>Program Advisory Committee</td>
</tr>
<tr>
<td>PDR</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>PEA</td>
<td>Programmatic Environmental Assessment</td>
</tr>
<tr>
<td>PEP</td>
<td>Project Execution Plan</td>
</tr>
<tr>
<td>PI</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>PMB</td>
<td>Performance Measurement Baseline</td>
</tr>
<tr>
<td>PMEL</td>
<td>Pacific Marine Environmental Laboratory</td>
</tr>
<tr>
<td>PMP</td>
<td>Property Management Plan</td>
</tr>
<tr>
<td>PND</td>
<td>Preliminary Network Design</td>
</tr>
<tr>
<td>PY</td>
<td>Project Year</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal</td>
</tr>
<tr>
<td>ROMB</td>
<td>Risk and Opportunity Management Board</td>
</tr>
<tr>
<td>R&RA</td>
<td>Research and Related Activities</td>
</tr>
<tr>
<td>RSN</td>
<td>Regional Scale Nodes</td>
</tr>
<tr>
<td>SEMP</td>
<td>Systems Engineering Management Plan</td>
</tr>
<tr>
<td>SER</td>
<td>Supplemental Environmental Report</td>
</tr>
<tr>
<td>SHOA</td>
<td>Hydrographic and Oceanographic Service</td>
</tr>
<tr>
<td>SIO</td>
<td>Scripps Institution of Oceanography</td>
</tr>
<tr>
<td>SRD</td>
<td>System Requirements Document</td>
</tr>
<tr>
<td>SSEA</td>
<td>Site-Specific Environmental Assessment</td>
</tr>
<tr>
<td>SUR</td>
<td>Science User Requirements</td>
</tr>
<tr>
<td>TDP</td>
<td>Technical Data Package</td>
</tr>
<tr>
<td>UCSD</td>
<td>University of California, San Diego</td>
</tr>
<tr>
<td>UNOLS</td>
<td>University-National Oceanographic Laboratory System</td>
</tr>
<tr>
<td>UW</td>
<td>University of Washington</td>
</tr>
<tr>
<td>VENUS</td>
<td>Victoria Experimental Network Under the Sea</td>
</tr>
<tr>
<td>WBS</td>
<td>Work Breakdown Structure</td>
</tr>
<tr>
<td>WHOI</td>
<td>Woods Hole Oceanographic Institution</td>
</tr>
</tbody>
</table>
Appendix A-3: Current Membership, Program Advisory Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>William Boicourt(^{\mathbf{v}})</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>Francisco Chavez</td>
<td>Monterey Bay Aquarium Research Institute</td>
</tr>
<tr>
<td>Percy Donaghay</td>
<td>University of Rhode Island</td>
</tr>
<tr>
<td>James Edson</td>
<td>University of Connecticut</td>
</tr>
<tr>
<td>Jeff Hare</td>
<td>National Oceanographic and Atmospheric Administration</td>
</tr>
<tr>
<td>Fei Chai</td>
<td>University of Maine</td>
</tr>
<tr>
<td>Stephan Howden</td>
<td>University of Southern Mississippi</td>
</tr>
<tr>
<td>Chuanmin Hu</td>
<td>University of South Florida</td>
</tr>
</tbody>
</table>

\(^{\mathbf{v}}\) Ocean Leadership Board of Trustees representative

\(^{\mathbf{v}}\) Chair
Appendix A-4: Technical Summary

Physical Infrastructure Description

Locations

Regional Scale Nodes:
- Node 1 Hydrate Ridge – Juan de Fuca tectonic plate, off Oregon, Position 44° 30' N 125° 24' W
- Node 3 Axial Seamount – Juan de Fuca tectonic plate, off Oregon, Position 45° 51' N 129° 43' W
- Node 5 Mid-Plate – Juan de Fuca tectonic plate, off Oregon, Position 45° 27' N 126° 22' W

Global Scale Nodes:
- Node 6 Station Papa – Northeast Pacific Ocean, Position 50°N 145°W
- Node 7 Irminger Sea – Irminger Sea, Position 60°N 39°W
- Node 8 Southern Ocean – Southern Ocean, Position 55°S 90°W
- Node 12 Argentine Basin – Argentine Basin, Position 42°S 42°W

Coastal Scale Nodes:
- Node 10 Pioneer Array – Mid-Atlantic Bight 40° 03' N 70° 45' W
- Node 11 Endurance Array – Pacific coast off Oregon 44° 39' N 126° 00' W
 – Pacific coast off Washington 46° 55' N 124° 57' W

Components

Regional Scale Nodes (100 total instruments):

Node 1 Hydrate Ridge
- Seafloor: Primary and Secondary 16 instruments total
- Profiler – Winched 10 instruments
- Profiler – Wire crawler 5 instruments
- Midwater Platform @ 200m 8 instruments
- Bottom Instrument Package 6 instruments

Node 3 Axial Seamount
- Seafloor: Primary and Secondary 26 instruments total
- Profiler – Winched 10 instruments
- Profiler – Wire crawler 5 instruments
- Midwater Platform @ 200m 8 instruments
- Bottom Instrument Package 6 instruments

Node 5 Mid-Plate (Uninstrumented)
- Seafloor: Primary 0 instruments total
- Cable Extension (Terminated) approximately 5 km in length
Global Scale Nodes (293 total instruments)

Node 6 Station Papa
Moorings
 1 Subsurface Hybrid Profiler with 16 instruments
 2 Flanking Moorings with 16 instruments each
Mobile assets
 3 Gliders with 3 instruments each

Node 7 Irminger Sea
Moorings
 1 Surface Mooring with 23 instruments
 1 Subsurface Hybrid Profiler with 12 instruments
 2 Flanking Moorings with 16 instruments each
Mobile
 3 Gliders with 3 instruments each

Node 8 Southern Ocean
Moorings
 1 Surface Mooring with 23 instruments
 1 Subsurface Hybrid Profiler with 16 instruments
 2 Flanking Moorings with 16 instruments each
Mobile Assets
 3 Gliders with 3 instruments each

Node 12 Argentine Basin
Moorings
 1 Surface Mooring with 23 instruments
 1 Subsurface Hybrid Profiler with 16 instruments
 2 Flanking Moorings with 16 instruments each
Mobile Assets
 3 Gliders with 3 instruments each
Coastal Scale Nodes (378 total instruments):

Node 10 Pioneer Array
- Surface Moorings
 - 1 with 20 instruments;
 - 1 with 20 instruments;
 - 1 with 22 instruments
- Surface-Piercing Profiler Moorings
 - 2 with 9 instruments each
- Profiler Moorings
 - 4 with 6 instruments each; 1 with 5 instruments
- Mobile Assets
 - 2 AUVs with 6 instruments each, with 2 docking stations
 - 6 Gliders with 5 instruments each

Node 11 Endurance Array

Oregon Line
- Surface Moorings
 - 2 (80 m, 500 m) with 14 instruments each
 - 1 (25 m) with 20 instruments
- Surface-Piercing Profiler Moorings
 - 2 (25 m, 80 m) with 9 instruments each
- Hybrid Profiler Moorings
 - 1 (500 m) with 16 instruments, cabled to RSN
- Benthic Experiment Packages
 - 1 (80 m) with 10 instruments, cabled to RSN
 - 1 (500 m) and 9 instruments, cabled to RSN

Washington Line
- Surface Moorings
 - 1 (25 m) with 20 instruments
 - 1 (80 m) with 24 instruments
 - 1 (500 m) with 23 instruments
- Surface-Piercing Profiler Moorings
 - 2 (25 m, 80 m) with 9 instruments each
- Profiler Moorings
 - 1 (500 m) with 5 instruments

Mobile Assets
- Gliders
 - 6 with 5 instruments each

<table>
<thead>
<tr>
<th>Number of Instrument Types</th>
<th>Number of Instruments</th>
<th>Instrument Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>761</td>
<td>All OOI core.</td>
</tr>
<tr>
<td>34</td>
<td>100</td>
<td>RSN Total.</td>
</tr>
<tr>
<td>32</td>
<td>661</td>
<td>CGSN Total. (292 Global. 149 Pioneer. 220 Endurance.)</td>
</tr>
</tbody>
</table>

Table 1 Summary of total instruments and instrument types across all OOI platforms. Note that field spares have not been included in these estimates.

Note: The instrument count in this document is accurate as of the date of this version. The authoritative source is the Instrument Application in the Software Application Framework (SAF).
Shore-side Facilities:
1. Woods Hole, MA (CGSN)
2. Corvallis, OR (CGSN)
3. San Diego, CA (CGSN)
4. Pacific City, OR (RSN)

Primary (backbone) Cable Line:
Cable line from RSN shore station to each RSN Primary Node and from Endurance Oregon Line to RSN Hydrate Ridge Node 1.

CI Locations:
1. Observatory Engineering Center, Hardware – San Diego, CA
2. Observatory Acquisition Points (OAP), Hardware – Portland, OR
3. Observatory Distribution Points (ODP), Hardware – Seattle, WA; San Diego, CA
4. Observatory Execution Points (OEP) – distributed (TeraGrid, Open Science Grid, Amazon ECC, Microsoft Computing Cloud, UW Digital Well) Access to these services via “peering points”

CI Subsystems:

Infrastructure Subsystems
- Common Operating Infrastructure (COI)
- Common Execution Infrastructure (CEI)
- Data Management (DM)

Application Subsystems
- Analysis and Synthesis (AS)
- Planning and Prosecution (PP)
- Sensing and Acquisition (SA)

Integration Subsystems
- External Observatory Integration (EOI)
- Marine Integration (MI) under PMO management
- User Experience (UX) under PMO management

CI Software Releases:
1. Data Distribution Network
2. Managed Instrument Network
3. Interactive Ocean Observatory Network
EPE Infrastructure categories:

1. Tools
 - Web-based interfaces
 - Visualization
 - Interactions with models, simulation runs
 - Digital merger with non-OOI databases
 - Educational modules

2. Resource Storage, Retrieval and Archiving
 - Educational Resource Database
 - Library of cultural formats

3. Virtual Participation
 - Virtual laboratories and work environments

4. People Resources
 - Scientist/Educator/Student Networking

5. Public Engagement
 - OOI Program-wide web presence

History of Instrument Count Changes

<table>
<thead>
<tr>
<th>Date</th>
<th>Change Description</th>
<th>ECR #</th>
<th>Number of Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2009</td>
<td>Project Baseline (PEP ver 3-00)</td>
<td></td>
<td>796</td>
</tr>
<tr>
<td>3/2010</td>
<td>Added six (6) PAR instruments for the Pioneer gliders and two (2) PAR instruments for the AUVs. Those instruments are needed to meet the science requirements and were overlooked in the original counts. (PEP ver 3-08)</td>
<td>1303-00063, 65</td>
<td>804</td>
</tr>
<tr>
<td>5/2010</td>
<td>Added three (3) VELPT instruments to the global surface moorings. Those instruments are needed to meet the science requirements and were overlooked in the original counts.</td>
<td>1303-00247</td>
<td>807</td>
</tr>
<tr>
<td>4/2011</td>
<td>Forty (40) acoustic modems are no longer included in the science instrument count as they are communication devices. (PEP ver 3-16)</td>
<td>(n/a)</td>
<td>767</td>
</tr>
<tr>
<td>6/2011</td>
<td>Two (2) CAMDS and two (2) FLORD instruments removed from RSN.</td>
<td>1300-00177</td>
<td>763</td>
</tr>
<tr>
<td>11/2011</td>
<td>Two (2) WAVSS instruments removed from the Inshore Endurance Surface Moorings</td>
<td>1303-00475</td>
<td>761</td>
</tr>
<tr>
<td>4/2012</td>
<td>Two (2) PRESF instruments removed as a result of removing the DCL from the BEP</td>
<td>1303-00654</td>
<td>759</td>
</tr>
<tr>
<td>8/2012</td>
<td>Twelve (12) instruments added to account for second wire following profiler on Station Papa, Argentine Basin, and Southern Ocean Hybrid Profiler Moorings</td>
<td>1303-00796</td>
<td>771</td>
</tr>
</tbody>
</table>
Project Execution Plan

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
<th>Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/2012</td>
<td>Four (4) METBK instruments removed from the Endurance Array Surface Moorings</td>
<td>1303-00794</td>
<td>767</td>
</tr>
<tr>
<td>10/2012</td>
<td>Four (4) PHSEN instruments added; two to the Pioneer Array, two to the Endurance Array</td>
<td>1300-00292</td>
<td>771</td>
</tr>
<tr>
<td>1/2013</td>
<td>Removed 6 FDCHP instruments.</td>
<td>1300-00318</td>
<td>765</td>
</tr>
<tr>
<td>1/2013</td>
<td>Fixed an error in implementing ECR in that the CTDPF on the Station Papa Global Hybrid Profiler Mooring was inadvertently not included in the SAF.</td>
<td>1303-00796</td>
<td>766</td>
</tr>
<tr>
<td>4/2013</td>
<td>Added a CTDPF and DOSTA to the Endurance Hybrid Profiler Mooring (CE04OSHY).</td>
<td>1303-00928</td>
<td>767</td>
</tr>
<tr>
<td>5/2013</td>
<td>Removed one of the three Pioneer AUVs with its accompanying six instruments.</td>
<td>1303-01029</td>
<td>761</td>
</tr>
</tbody>
</table>

Project Schedule Milestones

Adjusted milestones through the end of OOI Construction can be extracted easily from the updated Integrated Master Schedule (October 2013). The following table of Milestones is included in this PEP for historical context.

Project Schedule Milestones (Baseline)

Historical milestones based on 2009 baseline schedule.

<table>
<thead>
<tr>
<th>Item</th>
<th>Milestone / Task Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Start - Authorization to proceed</td>
<td>Sep, 2009</td>
</tr>
<tr>
<td>2</td>
<td>Implementing Organization Sub-Awards</td>
<td>Sep, 2009</td>
</tr>
<tr>
<td>3</td>
<td>Release RFP for Education</td>
<td>Dec, 2009</td>
</tr>
<tr>
<td>4</td>
<td>Extension Cables including Cable Terminations Development - Prototype Test Complete</td>
<td>Apr, 2010</td>
</tr>
<tr>
<td>5</td>
<td>EPE Contract Award Date</td>
<td>Jun, 2010</td>
</tr>
<tr>
<td>6</td>
<td>Extension Cables including Cable Terminations Development - Factory Test Complete</td>
<td>Aug, 2010</td>
</tr>
<tr>
<td>7</td>
<td>LV Node Development - Prototype Test Complete</td>
<td>Aug, 2010</td>
</tr>
<tr>
<td>8</td>
<td>J-Boxes Development - Prototype Test Complete</td>
<td>Aug, 2010</td>
</tr>
<tr>
<td>9</td>
<td>Global Glider PRR</td>
<td>Jan, 2011</td>
</tr>
<tr>
<td>10</td>
<td>Winch and Profilers Development - Prototype Test Complete</td>
<td>Jan, 2011</td>
</tr>
<tr>
<td>11</td>
<td>Coastal Gliders PRR</td>
<td>Mar, 2011</td>
</tr>
<tr>
<td>12</td>
<td>R1 Integrated Observatory Network - Acceptance Complete</td>
<td>Apr, 2011</td>
</tr>
<tr>
<td>Item</td>
<td>Milestone / Task Name</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>13</td>
<td>LV Node Development - Factory Test Complete</td>
<td>May, 2011</td>
</tr>
<tr>
<td>14</td>
<td>J-Boxes Development - Factory Test Complete</td>
<td>May, 2011</td>
</tr>
<tr>
<td>15</td>
<td>RSN Primary Infrastructure Cable Construction Complete</td>
<td>May, 2011</td>
</tr>
<tr>
<td>16</td>
<td>Vertical Moorings Development - Prototype Test Complete</td>
<td>Jun, 2011</td>
</tr>
<tr>
<td>17</td>
<td>Irminger Sea PRR</td>
<td>Aug, 2011</td>
</tr>
<tr>
<td>18</td>
<td>Argentine Basin PRR</td>
<td>Aug, 2011</td>
</tr>
<tr>
<td>19</td>
<td>Endurance OR Uncabled Array PRR</td>
<td>Aug, 2011</td>
</tr>
<tr>
<td>20</td>
<td>Pioneer Coastal Profiler PRR</td>
<td>Aug, 2011</td>
</tr>
<tr>
<td>21</td>
<td>Station Papa PRR</td>
<td>Aug, 2011</td>
</tr>
<tr>
<td>22</td>
<td>AUV and AUV Dock PRR</td>
<td>Sep, 2011</td>
</tr>
<tr>
<td>24</td>
<td>Endurance Cabled Endurance Array PRR</td>
<td>Oct, 2011</td>
</tr>
<tr>
<td>25</td>
<td>RSN Shore Station Build out Complete</td>
<td>Dec, 2011</td>
</tr>
<tr>
<td>26</td>
<td>R2 Integrated Observatory Network - Acceptance Complete</td>
<td>Apr, 2012</td>
</tr>
<tr>
<td>27</td>
<td>Southern Ocean PRR</td>
<td>May, 2012</td>
</tr>
<tr>
<td>28</td>
<td>Endurance Washington Surface Moorings and Winched Profiler PRR</td>
<td>May, 2012</td>
</tr>
<tr>
<td>29</td>
<td>Endurance Array Installation Readiness Review/ PCA - Gliders</td>
<td>May, 2012</td>
</tr>
<tr>
<td>30</td>
<td>Pioneer P1 - P4 PRR</td>
<td>May, 2012</td>
</tr>
<tr>
<td>32</td>
<td>Vertical Moorings Development - Factory Test Complete</td>
<td>Jun, 2012</td>
</tr>
<tr>
<td>33</td>
<td>Argentine Basin Installation Readiness Review/ PCA</td>
<td>Jan, 2013</td>
</tr>
<tr>
<td>34</td>
<td>Installation Readiness Test Complete - Hydrate Ridge</td>
<td>Mar, 2013</td>
</tr>
<tr>
<td>35</td>
<td>Endurance Array Installation Readiness Review/ PCA - Uncabled</td>
<td>Apr, 2013</td>
</tr>
<tr>
<td>36</td>
<td>Station Papa Installation Readiness Review/ PCA</td>
<td>Apr, 2013</td>
</tr>
<tr>
<td>37</td>
<td>Irminger Sea Installation Readiness Review/ PCA</td>
<td>Apr, 2013</td>
</tr>
<tr>
<td>38</td>
<td>Installation Readiness Test Compete - Axial</td>
<td>May, 2013</td>
</tr>
<tr>
<td>39</td>
<td>AUV Installation Readiness Review/ PCA</td>
<td>Jun, 2013</td>
</tr>
<tr>
<td>40</td>
<td>R3 Integrated Observatory Network Release 3 - Commissioning Complete</td>
<td>Jun, 2013</td>
</tr>
<tr>
<td>41</td>
<td>Endurance Array Installation Readiness Review/ PCA - Cabled</td>
<td>Aug, 2013</td>
</tr>
<tr>
<td>43</td>
<td>Pioneer Coastal Profiler Installation Readiness Review/ PCA</td>
<td>Aug, 2013</td>
</tr>
<tr>
<td>44</td>
<td>Site Acceptance Complete - Axial</td>
<td>Aug, 2013</td>
</tr>
<tr>
<td>46</td>
<td>Southern Ocean Installation Readiness Review/ PCA</td>
<td>Dec, 2013</td>
</tr>
<tr>
<td>Item</td>
<td>Milestone / Task Name</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>48</td>
<td>Endurance WA Installation Readiness Review - Surface Moorings and Winched Profilers</td>
<td>Apr, 2014</td>
</tr>
<tr>
<td>49</td>
<td>RS Integrated Observatory Network Release 5 - Commissioning Complete</td>
<td>Aug, 2014</td>
</tr>
<tr>
<td>50</td>
<td>Education Infrastructure Operational</td>
<td>Aug, 2014</td>
</tr>
<tr>
<td>51</td>
<td>OOI - Planned End of Project</td>
<td>Aug, 2014</td>
</tr>
</tbody>
</table>

IRR - Installation Readiness Review
PCA - Physical Configuration Audit
PRR - Production Readiness Review
EPE MREFC Team Org Chart

Management Team

Principal Investigator
Scott Glenn (Rutgers)

Project Manager
Joe Wilczek (Raytheon)

Engineering

Development Team

Team Leader
Joe Wilczek (Raytheon)

Lead Developer
Sage Liangewar (Rutgers)

Developers/Designers

Allen Yu, Sam Lu, Sherry Xiang (Raytheon)

Design Team

User Interface

University of Maine

Lea Wann, McGregor (Rutgers)

User Interface Developer

University of Oregon

Gu Liang (Oregon State)

University of Washington

TBD
SIO CGSN Organization

Uwe Send
SIO Principal Investigator
Project Scientist for Global OOI

Matthias Lankhorst
Dep SIO PI &
Dep PS for Global OOI

Ken Angel
SIO Project Manager

SIO CGSN Organization

Sabrina Leitner
Financial Analyst

Gabriella Chavez
Operations & Maint Lead

Paul Chua
Marine Mechanic Tech

Ethan Morris
Marine Mechanic Tech

Chris Berg
Marine Mechanic Tech

Ken Angel
Systems Engineer

Hey-Jin Kim
Asst PI/PS/Project Management

Sung Hyun Nam
Data QA/QC Scientist

TBD
Mechanical Engineer

TBD
Lead HW Engineer

Romain Heux
Electrical/SW Engineer

Song Jiang
Programmer Analyst